An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation

To better understand and characterize current uncertainties in the important observational constraint of climate models of aerosol optical depth (AOD), we evaluate and intercompare 14 satellite products, representing nine different retrieval algorithm families using observations from five different sensors on six different platforms. The satellite products (super-observations consisting of 1× 1 daily aggregated retrievals drawn from the years 2006, 2008 and 2010) are evaluated with AErosol RObotic NETwork (AERONET) and Maritime Aerosol Network (MAN) data. Results show that different products exhibit different regionally varying biases (both underand overestimates) that may reach ±50 %, although a typical bias would be 15 %–25 % (depending on the product). In addition to these biases, the products exhibit random errors that can be 1.6 to 3 times as large. Most products show similar performance, although there are a few exceptions with either larger biases or larger random errors. The intercomparison of satellite products extends this analysis and provides spatial context to it. In particular, we show that aggregated satellite AOD agrees much better than the spatial coverage (often driven by cloud masks) within the 1× 1 grid cells. Up to ∼ 50 % of the difference between satellite AOD is attributed to cloud contamination. The diversity in AOD products shows clear spatial Published by Copernicus Publications on behalf of the European Geosciences Union. 12432 N. Schutgens et al.: Intercomparison of satellite AOD patterns and varies from 10 % (parts of the ocean) to 100 % (central Asia and Australia). More importantly, we show that the diversity may be used as an indication of AOD uncertainty, at least for the better performing products. This provides modellers with a global map of expected AOD uncertainty in satellite products, allows assessment of products away from AERONET sites, can provide guidance for future AERONET locations and offers suggestions for product improvements. We account for statistical and sampling noise in our analyses. Sampling noise, variations due to the evaluation of different subsets of the data, causes important changes in error metrics. The consequences of this noise term for product evaluation are discussed.

[1]  N. Schutgens Site representativity of AERONET and GAW remotely sensed aerosol optical thickness and absorbing aerosol optical thickness observations , 2020, Atmospheric Chemistry and Physics.

[2]  Alexei Lyapustin,et al.  Merging regional and global aerosol optical depth records from major available satellite products , 2020 .

[3]  Yiran Peng,et al.  Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products , 2019, Atmospheric Chemistry and Physics.

[4]  N. Christina Hsu,et al.  Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land , 2019, Journal of Geophysical Research: Atmospheres.

[5]  N. C. Hsu,et al.  VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long‐Term Aerosol Data Records , 2019, Journal of Geophysical Research: Atmospheres.

[6]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[7]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[8]  Yujie Wang,et al.  Exploring systematic offsets between aerosol products from the two MODIS sensors. , 2018, Atmospheric measurement techniques.

[9]  V. Kolehmainen,et al.  Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land , 2018 .

[10]  Edith Rodriguez,et al.  Collocation mismatch uncertainties in satellite aerosol retrieval validation , 2017 .

[11]  Brent N. Holben,et al.  Retrieving near‐global aerosol loading over land and ocean from AVHRR , 2017 .

[12]  N. C. Hsu,et al.  Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements , 2017, Journal of geophysical research. Atmospheres : JGR.

[13]  M. Schulz,et al.  On the spatio-temporal representativeness of observations , 2017 .

[14]  G. Leeuw,et al.  Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer , 2016 .

[15]  Michael Schulz,et al.  Will a perfect model agree with perfect observations? The impact of spatial sampling , 2016 .

[16]  Antti Arola,et al.  Artificial bias typically neglected in comparisons of uncertain atmospheric data , 2016 .

[17]  Duncan Watson-Parris,et al.  Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations , 2016 .

[18]  N. C. Hsu,et al.  Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation , 2015 .

[19]  Philip Stier,et al.  The importance of temporal collocation for the evaluation of aerosol models with observations , 2015 .

[20]  Didier Tanré,et al.  Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis , 2015 .

[21]  Hiren Jethva,et al.  Global assessment of OMI aerosol single‐scattering albedo using ground‐based AERONET inversion , 2014 .

[22]  David G. Streets,et al.  Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model , 2014 .

[23]  Hiren Jethva,et al.  Assessment of OMI near‐UV aerosol optical depth over land , 2014 .

[24]  Anu W. Turunen,et al.  Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project , 2014, The Lancet.

[25]  Kai Zhang,et al.  MAC‐v1: A new global aerosol climatology for climate studies , 2013 .

[26]  Lorraine A. Remer,et al.  Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends , 2013 .

[27]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[28]  Didier Tanré,et al.  Aerosol retrieval experiments in the ESA Aerosol_cci project , 2013 .

[29]  C. Ichoku,et al.  Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors , 2013 .

[30]  D. Cayan,et al.  Kawasaki disease and ENSO‐driven wind circulation , 2013 .

[31]  Andrew K. Heidinger,et al.  A global survey of the effect of cloud contamination on the aerosol optical thickness and its long‐term trend derived from operational AVHRR satellite observations , 2013 .

[32]  Brent N. Holben,et al.  Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS , 2012 .

[33]  S. Conil,et al.  Impacts of Aeolian dust deposition on European forest sustainability: A review , 2012 .

[34]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[35]  Sietse O. Los,et al.  A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR , 2012 .

[36]  F. Bréon,et al.  An evaluation of satellite aerosol products against sunphotometer measurements , 2011 .

[37]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[38]  D. L. Nelson,et al.  Response to "Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET" , 2011 .

[39]  Roy G. Grainger,et al.  Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields , 2010 .

[40]  Joseph M. Prospero,et al.  Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum , 2010 .

[41]  Brian Cairns,et al.  Toward unified satellite climatology of aerosol properties.: 3. MODIS versus MISR versus AERONET , 2010 .

[42]  Daniel Krewski,et al.  Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants , 2009, The Lancet.

[43]  A. Kokhanovsky,et al.  Satellite Aerosol Remote Sensing Over Land , 2009 .

[44]  Richard Siddans,et al.  Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers , 2009 .

[45]  S. Kinne Remote sensing data combinations: superior global maps for aerosol optical depth , 2009 .

[46]  Brian Cairns,et al.  Toward unified satellite climatology of aerosol properties : What do fully compatible MODIS and MISR aerosol pixels tell us? , 2008 .

[47]  Michael I. Mishchenko,et al.  Toward unified satellite climatology of aerosol properties: Direct comparisons of advanced level 2 aerosol products , 2008 .

[48]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[49]  Michael R Chernick,et al.  Bootstrap Methods: A Guide for Practitioners and Researchers , 2007 .

[50]  Grant Harvey McTainsh,et al.  The role of aeolian dust in ecosystems , 2007 .

[51]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[52]  Yoram J. Kaufman,et al.  Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000 , 2004 .

[53]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[54]  Alexander Ignatov,et al.  Intercomparison of Satellite Retrieved Aerosol Optical Depth over the Ocean , 2004 .

[55]  Majid Ezzati,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group , 2022 .

[56]  Peter R. J. North,et al.  Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR‐2 dual‐angle imagery: Operational method and validation , 2002 .

[57]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[58]  S. Vink,et al.  The role of dust deposition in determining surface water distributions of Al and Fe in the South West Atlantic , 2001 .

[59]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[60]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[61]  Alexander Smirnov,et al.  Comparison of aerosol optical depth from four solar radiometers during the fall 1997 ARM intensive observation period , 1999 .

[62]  Peter R. J. North,et al.  Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[63]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[64]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[65]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[66]  M. Green Air pollution and health , 1995 .

[67]  D. Dockery,et al.  An association between air pollution and mortality in six U.S. cities. , 1993, The New England journal of medicine.

[68]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[69]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[70]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[71]  A. Ångström Atmospheric turbidity, global illumination and planetary albedo of the earth , 1962 .