Lattice Approximations for Stochastic Quasi-Linear Parabolic Partial Differential Equations driven by Space-Time White Noise II

[1]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[2]  D. Nualart,et al.  Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise , 1997 .

[3]  Nicolai V. Krylov,et al.  On Lp-theory of stochastic partial di6erential equations in the whole space , 1996 .

[4]  Approximation of a One-Dimensional Stochastic PDE by Local Mean Field Type Lattice Systems , 1996 .

[5]  B. Rüdiger,et al.  Time dependent critical fluctuations of a one dimensional local mean field model , 1995 .

[6]  D. Nualart,et al.  Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise , 1995 .

[7]  I. Gyöngy On non-degenerate quasi-linear stochastic partial differential equations , 1995 .

[8]  B. Rüdiger,et al.  Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE , 1994 .

[9]  Etienne Pardoux,et al.  On quasi-linear stochastic partial differential equations , 1993 .

[10]  G. Jetschke Lattice Approximation of a Nonlinear Stochastic Partial Differential Equation with White Noise , 1991 .

[11]  R. Manthey Existence and Uniqueness of a Solution of a Reaction‐Diffusion Equation with Polynomial Nonlinearity and White Noise Disturbance , 1986 .

[12]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[13]  T. Funaki Random motion of strings and related stochastic evolution equations , 1983, Nagoya Mathematical Journal.

[14]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[15]  N. Krylov Controlled Diffusion Processes , 1980 .

[16]  István Gyöngy,et al.  On stochastic equations with respect to semimartingales I. , 1980 .

[17]  R. M. Loynes,et al.  Studies In The Theory Of Random Processes , 1966 .