Stability structures, motivic Donaldson-Thomas invariants and cluster transformations

We define new invariants of 3d Calabi-Yau categories endowed with a stability structure. Intuitively, they count the number of semistable objects with fixed class in the K-theory of the category ('number of BPS states with given charge' in physics language). Formally, our motivic DT-invariants are elements of quantum tori over a version of the Grothendieck ring of varieties over the ground field. Via the quasi-classical limit 'as the motive of affine line approaches to 1' we obtain numerical DT-invariants which are closely related to those introduced by Behrend. We study some properties of both motivic and numerical DT-invariants including the wall-crossing formulas and integrality. We discuss the relationship with the mathematical works (in the non-triangulated case) of Joyce, Bridgeland and Toledano-Laredo, as well as with works of physicists on Seiberg-Witten model (string junctions), classification of N=2 supersymmetric theories (Cecotti-Vafa) and structure of the moduli space of vector multiplets. Relating the theory of 3d Calabi-Yau categories with distinguished set of generators (called cluster collection) with the theory of quivers with potential we found the connection with cluster transformations and cluster varieties (both classical and quantum).

[1]  J. Denef,et al.  Germs of arcs on singular algebraic varieties and motivic integration , 1999 .

[2]  B. Keller A-infinity algebras, modules and functor categories , 2005, math/0510508.

[3]  L.Katzarkov,et al.  Hodge theoretic aspects of mirror symmetry , 2008, 0806.0107.

[4]  A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations , 1998, math/9806111.

[5]  M. Inaba Moduli of stable objects in a triangulated category , 2006, math/0612078.

[6]  D-Branes And Mirror Symmetry , 2000, hep-th/0005247.

[7]  Ed Segal The A∞ Deformation Theory of a Point and the Derived Categories of Local Calabi-Yaus , 2008 .

[8]  Cluster Algebras and Poisson Geometry , 2002, math/0208033.

[9]  E. Looijenga Motivic measures , 2000, math/0006220.

[10]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[11]  M. Reineke Poisson automorphisms and quiver moduli , 2008, Journal of the Institute of Mathematics of Jussieu.

[12]  Configurations in abelian categories: IV. Invariants and changing stability conditions , 2004, math/0410268.

[13]  M. Kontsevich,et al.  Affine Structures and Non-Archimedean Analytic Spaces , 2004, math/0406564.

[14]  D. joyce Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds , 2006, hep-th/0607039.

[15]  Richard P. Thomas,et al.  Curve counting via stable pairs in the derived category , 2007, 0707.2348.

[16]  The quantum dilogarithm and representations of quantum cluster varieties , 2007, math/0702397.

[17]  M. Gross,et al.  Mirror Symmetry via Logarithmic Degeneration Data II , 2007, 0709.2290.

[18]  Motivic Serre invariants, ramification, and the analytic Milnor fiber , 2007, math/0703217.

[19]  Ed Segal The A-infinity Deformation Theory of a Point and the Derived Categories of Local Calabi-Yaus , 2007, math/0702539.

[20]  M. Saito,et al.  Mixed Hodge modules , 1990 .

[21]  Functoriality in Resolution of Singularities , 2007, math/0702375.

[22]  B. Toën Derived Hall algebras , 2005 .

[23]  Franziska Bittner The universal Euler characteristic for varieties of characteristic zero , 2001, Compositio Mathematica.

[24]  G. Moore,et al.  Crossing the Wall: Branes vs. Bundles , 2007, 0706.3193.

[25]  Quantum Dilogarithm , 1993, hep-th/9310070.

[26]  D. joyce Configurations in abelian categories. III. Stability conditions and identities , 2004, math/0410267.

[27]  Miranda C. N. Cheng,et al.  Wall crossing, discrete attractor flow and Borcherds algebra , 2008, 0806.2337.

[28]  Y. Soibelman Mirror symmetry and noncommutative geometry of A∞-categories , 2004 .

[29]  M. Kontsevich,et al.  Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry , 2006, math/0606241.

[30]  A. Zelevinsky Mutations for quivers with potentials: Oberwolfach talk, April 2007 , 2007, 0706.0822.

[31]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[32]  Cohomology of non-commutative Hilbert schemes , 2003, math/0306185.

[33]  J. Weyman,et al.  Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.

[34]  S. Donaldson,et al.  Gauge Theory in higher dimensions, II , 2009, 0902.3239.

[35]  K. Yoshioka,et al.  Perverse coherent sheaves on blow-up. II. Wall-crossing and Betti numbers formula , 2008, 0806.0463.

[36]  Unital ${A}_\infty$-categories , 2008, 0802.2885.

[37]  S. A. Huggett,et al.  The geometric universe : science, geometry, and the work of Roger Penrose , 1998 .

[38]  Kentaro Nagao,et al.  Derived categories of small toric Calabi-Yau 3-folds and counting invariants , 2008, 0809.2994.

[39]  Automorphic forms with singularities on Grassmannians , 1996, alg-geom/9609022.

[40]  Moduli of objects in dg-categories , 2005, math/0503269.

[41]  Yukinobu Toda Limit stable objects on Calabi-Yau 3-folds , 2008, 0803.2356.

[42]  H. Nakajima,et al.  Counting invariant of perverse coherent sheaves and its wall-crossing , 2008, 0809.2992.

[43]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[44]  Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I , 2006, math/0606241.

[45]  Richard P. Thomas,et al.  The 3-fold vertex via stable pairs , 2007, 0709.3823.

[46]  S. Mozgovoy,et al.  On the number of stable quiver representations over finite fields , 2007, 0708.1259.

[47]  Yukinobu Toda Moduli stacks and invariants of semistable objects on K3 surfaces , 2007, math/0703590.

[48]  Richard P. Thomas,et al.  Moment maps, monodromy and mirror manifolds , 2001, math/0104196.

[49]  Victor Ginzburg Calabi-Yau algebras , 2006 .

[50]  C. Vafa,et al.  On classification ofN=2 supersymmetric theories , 1993 .

[51]  G. Laumon Transformation De Fourier Constantes D’Équations Fonctionnelles Et Conjecture De Weil , 1987 .

[52]  Stability conditions and the braid group , 2002, math/0212214.

[53]  Geometry on Arc Spaces of Algebraic Varieties , 2000, math/0006050.

[54]  Arend Bayer Polynomial Bridgeland stability conditions and the large volume limit , 2007, 0712.1083.

[55]  M. Kontsevich FORMAL (NON)-COMMUTATIVE SYMPLECTIC GEOMETRY , 1993 .

[56]  R. Donagi,et al.  Cubics, Integrable Systems, and Calabi-Yau Threefolds , 1994, alg-geom/9408004.

[57]  S. Mozgovoy,et al.  On the noncommutative Donaldson-Thomas invariants arising from brane tilings , 2008, 0809.0117.

[58]  On the Motive of the Stack of Bundles , 2005, math/0512640.

[59]  The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli , 2002, math/0204059.

[60]  Hall algebras associated to triangulated categories , 2006, math/0608144.

[61]  M. Kontsevich XI Solomon Lefschetz Memorial Lecture Series: Hodge structures in non-commutative geometry. (Notes by Ernesto Lupercio) , 2008, 0801.4760.

[62]  G. Moore,et al.  Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory , 2008, 0807.4723.

[63]  Yukinobu Toda Birational Calabi-Yau 3-folds and BPS state counting , 2007, 0707.1643.

[64]  N. Seiberg,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .