Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae

The collapsar model, the now leading model for the engine behind gamma-ray bursts and hypernovae, requires that a star collapses to form a black hole surrounded by an accretion disk of high angular momentum material. The current best theoretical stellar models, however, do not retain enough angular momentum in the core of the star to make a centrifugally supported disk. In this paper, we present the first calculations of the helium star/helium star merger progenitors for the collapsar model. These progenitors invoke the merger of two helium cores during the common-envelope inspiral phase of a binary system. We find that in some cases, the merger can produce cores that are rotating 3-10 times faster than single stars. He star/He star gamma-ray burst progenitors have a very different redshift distribution than their single-star gamma-ray burst progenitors, and we discuss how gamma-ray burst observations can constrain these progenitors.

[1]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[2]  E. Cappellaro,et al.  The Rates of hypernovae and gamma-ray bursts: Implications for their progenitors , 2004 .

[3]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[4]  Chris L. Fryer,et al.  Core-Collapse Simulations of Rotating Stars , 1999, astro-ph/9907433.

[5]  G. Brown Neutron star accretion and binary pulsar formation , 1995 .

[6]  THE PROGENITOR OF SN 1987A , 1992 .

[7]  Chris L. Fryer,et al.  To be submitted to The Astrophysical Journal Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts , 1999 .

[8]  S. Shapiro,et al.  Effect of Differential Rotation on the Maximum Mass of Neutron Stars: Realistic Nuclear Equations of State , 2004, astro-ph/0401581.

[9]  S. E. Woosley,et al.  Supernovae, Jets, and Collapsars , 1999, astro-ph/9910034.

[10]  E. Rol,et al.  On the Afterglow of the X-Ray Flash of 2003 July 23: Photometric Evidence for an Off-Axis Gamma-Ray Burst with an Associated Supernova?* , 2004 .

[11]  N. Langer,et al.  Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure , 1999, astro-ph/9904132.

[12]  C. L. Fryer,et al.  Modeling Core-Collapse Supernovae in Three Dimensions , 2002 .

[13]  Chris L. Fryer,et al.  Hyperaccreting Black Holes and Gamma-Ray Bursts , 1998, astro-ph/9807028.

[14]  Tomasz Bulik,et al.  Merger Sites of Double Neutron Stars and Their Host Galaxies , 2002, astro-ph/0204416.

[15]  Chris L. Fryer,et al.  The Limiting Stellar Initial Mass for Black Hole Formation in Close Binary Systems , 2001, astro-ph/0112539.

[16]  R. Perna,et al.  Neutrino Trapping and Accretion Models for Gamma-Ray Bursts , 2002, astro-ph/0207319.

[17]  Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[18]  S. Djorgovski,et al.  The bright optical afterglow of the nearby γ-ray burst of 29 March 2003 , 2003, Nature.

[19]  Hydrodynamical simulations of the stream–core interaction in the slow merger of massive stars , 2001, astro-ph/0109524.

[20]  Willy Benz,et al.  Population Syntheses for Neutron Star Systems with Intrinsic Kicks , 1997, astro-ph/9710333.

[21]  J. I. Katz Yet Another Model of Gamma-Ray Bursts , 1997 .

[22]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[23]  W. Benz,et al.  Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.

[24]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[25]  S. Teukolsky,et al.  Rapidly Rotating Polytropes in General Relativity , 1993 .

[26]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[27]  S. E. Woosley,et al.  The propagation and eruption of relativistic jets from the stellar progenitors of gamma-ray bursts , 2004 .

[28]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[29]  S. R. Kulkarni,et al.  A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae , 2003, astro-ph/0307228.

[30]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[31]  Chris L. Fryer,et al.  The merger of a helium star and a black hole: gamma-ray bursts , 2000, astro-ph/0011236.

[32]  Y. Yoshii,et al.  A Two-Component Model for the Light Curves of Hypernovae , 2003, astro-ph/0305182.

[33]  A. S. Umar,et al.  An Investigation of Neutrino-driven Convection and the Core Collapse Supernova Mechanism Using Multigroup Neutrino Transport , 1996, Astrophysical Journal.

[34]  Michael S. Warren,et al.  The Collapse of Rotating Massive Stars in Three Dimensions , 2004 .

[35]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[36]  S. Woosley,et al.  Presupernova evolution of massive stars. , 1978 .

[37]  M. Rampp,et al.  Improved models of stellar core collapse and still no explosions: what is missing? , 2003, Physical review letters.

[38]  G. Meynet,et al.  Stellar evolution with rotation X. Wolf-Rayet star populations at solar metallicity , 2022 .