Land Use Dynamics and Sugarcane Production

In this chapter the debate on sugarcane ethanol focuses on land use from a global point of view. There are many competing demands for land: to grow crops for food, feed, fibre and fuel, for nature conservation, urban development and other functions. The objective of the chapter is to analyze current and potential sugarcane production in the world and to provide an assessment of land suitable for sugarcane production.

[1]  M. G. Cardoso Costa,et al.  Horticultural biotechnology in Brazil , 2006 .

[2]  Wim Turkenburg,et al.  The sustainability of Brazilian ethanol - an assessment of the possibilities of certified production , 2007 .

[3]  G. Fischer,et al.  Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080 , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Alexandre Marco da Silva,et al.  Historical land-cover/use in different slope and riparian buffer zones in watersheds of the state of São Paulo, Brazil , 2007 .

[5]  B. E. Vaughan,et al.  Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint , 2005 .

[6]  Günther Fischer,et al.  Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080 , 2007 .

[7]  W. Politano,et al.  Avaliação por fotointerpretação das áreas de abrangência dos diferentes estados da erosão acelerada do solo em canaviais e pomares de citros , 2005 .

[8]  S. Filoso,et al.  Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. , 2008, Ecological applications : a publication of the Ecological Society of America.

[9]  P. Fearnside Deforestation in Brazilian Amazonia: History, Rates, and Consequences , 2005 .

[10]  Antonella Zanobetti,et al.  The Impact of Sugar Cane–Burning Emissions on the Respiratory System of Children and the Elderly , 2006, Environmental health perspectives.

[11]  Günther Fischer,et al.  Climate Change Impacts on Irrigation Water Requirements: Effects of Mitigation , 2007 .

[12]  Luís Carlos Timm,et al.  Variability of soil water content and bulk density in a sugarcane field , 2002 .

[13]  . A.A.Naseri,et al.  Soil Compaction Due to Sugarcane (Saccharum officinarum) Mechanical Harvesting and the Effects of Subsoiling on the Improvement of Soil Physical Properties , 2007 .

[14]  William F. Laurance,et al.  How Green Are Biofuels? , 2008, Science.

[15]  J. Goldemberg Ethanol for a Sustainable Energy Future , 2007, Science.

[16]  J. Seabra,et al.  Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. , 2008 .

[17]  Sebastião Neto Ribeiro Guedes,et al.  Os Mercados de Terra e trabalho na (re)estruturação da categoria social dos fornecedores de cana do Estado de São Paulo: análise de dados de campo , 2007 .

[18]  William S. Saint Farming for energy: social options under Brazil's National Alcohol Programme , 1982 .

[19]  Günther Fischer,et al.  Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080 , 2007 .

[20]  Luc Hens,et al.  The World Summit on Sustainable Development , 2005 .

[21]  Luciano Gualberto,et al.  The ethanol program in Brazil , 2006 .

[22]  Marinez Ferreira de Siqueira,et al.  THREATS TO THE CERRADO REMNANTS OF THE STATE OF SÃO PAULO, BRAZIL , 2007 .

[23]  Carlos Manoel Pedro Vaz,et al.  Efeito do cultivo contínuo da cana-de-açúcar em propriedades físicas de um Latossolo Vermelho Escuro , 1995 .

[24]  Jorge Luis Silva Brito,et al.  Mapeamento semidetalhado do uso da terra do Bioma Cerrado , 2008 .

[25]  Ewald Schnug,et al.  Temporal Erosion-Induced Soil Degradation and Yield Loss , 2001 .

[26]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[27]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[28]  Brian C. O'Neill,et al.  Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol Forecast Soc Chang , 2007 .

[29]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[30]  H. Ribeiro,et al.  [Sugar cane burning in Brazil: respiratory health effects]. , 2008, Revista de saude publica.

[31]  J. Goldemberg,et al.  The Sustainability of Ethanol Production from Sugarcane , 2008, Renewable Energy.

[32]  Ademir dos Santos,et al.  Diagnóstico ambiental de metais e organoclorados em córregos adjacentes a áreas de cultivo de cana-de-açúcar (Estado de São Paulo, Brasil) , 2006 .

[33]  T. D. Mitchell,et al.  An improved method of constructing a database of monthly climate observations and associated high‐resolution grids , 2005 .

[34]  Suzana Maria Gico Lima Montenegro,et al.  Sugar Cane Industry as a Source of Water Pollution – Case Study on the Situation in Ipojuca River, Pernambuco, Brazil , 2007 .

[35]  R. Machado,et al.  Conservation of the Brazilian Cerrado , 2005 .

[36]  Luiz Antonio Martinelli,et al.  Organochlorine pesticides in Piracicaba river basin (São Paulo/Brazil): a survey of sediment, bivalve and fish , 2008 .