Partitioning Search Spaces of a Randomized Search

This paper studies the following question: given an instance of the propositional satisfiability problem, a randomized satisfiability solver, and a cluster of n computers, what is the best way to use the computers to solve the instance? Two approaches, simple distribution and search space partitioning as well as their combinations are investigated both analytically and empirically. It is shown that the results depend heavily on the type of the problem (unsatisfiable, satisfiable with few solutions, and satisfiable with many solutions) as well as on how good the search space partitioning function is. In addition, the behavior of a real search space partitioning function is evaluated in the same framework. The results suggest that in practice one should combine the simple distribution and search space partitioning approaches.

[1]  Katsumi Inoue,et al.  A competitive and cooperative approach to propositional satisfiability , 2006, Discret. Appl. Math..

[2]  Vipin Kumar,et al.  Superlinear Speedup in Parallel State-Space Search , 1988, FSTTCS.

[3]  Oliver Vornberger,et al.  Superlinear Speedup for Parallel Backtracking , 1987, ICS.

[4]  Lucas Bordeaux,et al.  Experiments with Massively Parallel Constraint Solving , 2009, IJCAI.

[5]  Bernd Becker,et al.  PaMiraXT: Parallel SAT Solving with Threads and Message Passing , 2009, J. Satisf. Boolean Model. Comput..

[6]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[7]  Steven David Prestwich,et al.  Improved Branch and Bound in Constraint Logic Programming , 1995, CP.

[8]  Richard Wolski,et al.  GridSAT: a system for solving satisfiability problems using a computational grid , 2006, Parallel Comput..

[9]  Bernd Becker,et al.  PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing , 2009, SAT.

[10]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[11]  Sartaj Sahni,et al.  Anomalies in Parallel Branch-and-Bound Algorithms , 1984 .

[12]  Vipin Kumar,et al.  State of the Art in Parallel Search Techniques for Discrete Optimization Problems , 1999, IEEE Trans. Knowl. Data Eng..

[13]  Antti E. J. Hyvärinen Approaches to grid-based SAT solving , 2009 .

[14]  Lakhdar Sais,et al.  Control-Based Clause Sharing in Parallel SAT Solving , 2009, IJCAI.

[15]  Lakhdar Sais,et al.  ManySAT: a Parallel SAT Solver , 2009, J. Satisf. Boolean Model. Comput..

[16]  Ilkka Niemelä,et al.  Strategies for Solving SAT in Grids by Randomized Search , 2008, AISC/MKM/Calculemus.

[17]  Wolfgang Küchlin,et al.  Parallel propositional satisfiability checking with distributed dynamic learning , 2003, Parallel Comput..

[18]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[19]  Dharma P. Agrawal,et al.  A randomized parallel branch-and-bound algorithm , 1989, International Journal of Parallel Programming.

[20]  Dharma P. Agrawal,et al.  A Randomized Parallel Backtracking Algorithm , 1988, IEEE Trans. Computers.

[21]  Mike Reeve,et al.  Why and How in the ElipSys OR-parallel CLP System , 1993, PARLE.

[22]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[23]  Ilkka Niemelä,et al.  Partitioning SAT Instances for Distributed Solving , 2010, LPAR.

[24]  Gil Utard,et al.  A Parallelization Scheme Based on Work Stealing for a Class of SAT Solvers , 2005, Journal of Automated Reasoning.

[25]  Kazunori Ueda,et al.  c-sat: A Parallel SAT Solver for Clusters , 2009, SAT.

[26]  Paulo F. Flores,et al.  PMSat: a parallel version of MiniSAT , 2008, J. Satisf. Boolean Model. Comput..

[27]  Giovanni Resta,et al.  Nagging: A scalable fault-tolerant paradigm for distributed search , 2002, Artif. Intell..

[28]  Ilkka Niemelä,et al.  Incorporating Clause Learning in Grid-Based Randomized SAT Solving , 2009, J. Satisf. Boolean Model. Comput..

[29]  Peter J. Stuckey,et al.  PMiniSat - A parallelization of MiniSat 2.0 , 2008 .

[30]  Vipin Kumar,et al.  On the Efficiency of Parallel Backtracking , 1993, IEEE Trans. Parallel Distributed Syst..

[31]  Ilkka Niemelä,et al.  A Distribution Method for Solving SAT in Grids , 2006, SAT.

[32]  Ewald Speckenmeyer,et al.  A fast parallel SAT-solver — efficient workload balancing , 2005, Annals of Mathematics and Artificial Intelligence.

[33]  Benjamin W. Wah,et al.  Computational Efficiency of Parallel Combinatorial OR-Tree Searches , 1990, IEEE Trans. Software Eng..

[34]  Wolfgang Ertel,et al.  Optimal parallelization of Las Vegas algorithms , 1993, Forschungsberichte, TU Munich.

[35]  Ilkka Niemelä,et al.  Partitioning Search Spaces of a Randomized Search , 2009, AI*IA.

[36]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[37]  Gilles Dequen,et al.  Toward Easy Parallel SAT Solving , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.

[38]  Maria Paola Bonacina,et al.  PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems , 1996, J. Symb. Comput..