Competing kinetics and he bubble morphology in W.

The growth process of He bubbles in W is investigated using molecular dynamics and parallel replica dynamics for growth rates spanning 6 orders of magnitude. Fast and slow growth regimes are defined relative to typical diffusion hopping times of W interstitials around the He bubble. Slow growth rates allow the diffusion of interstitials around the bubble, favoring the biased growth of the bubble towards the surface. In contrast, at fast growth rates interstitials do not have time to diffuse around the bubble, leading to a more isotropic growth and increasing the surface damage.

[1]  Brian D. Wirth,et al.  Interatomic potentials for simulation of He bubble formation in W , 2013 .

[2]  Brian D. Wirth,et al.  Thermal stability of helium-vacancy clusters in iron , 2003 .

[3]  K. Nordlund,et al.  Loop punching and bubble rupture causing surface roughening —A model for W fuzz growth , 2014 .

[4]  R. Doerner,et al.  Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades , 2010 .

[5]  Brian D. Wirth,et al.  Tungsten surface evolution by helium bubble nucleation, growth and rupture , 2013 .

[6]  D. E. Beck A new interatomic potential function for helium , 1968 .

[7]  A. Voter,et al.  Reflection and implantation of low energy helium with tungsten surfaces , 2014, 1401.2183.

[8]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[9]  J. Keinonen,et al.  Difference in formation of hydrogen and helium clusters in tungsten , 2005 .

[10]  M. Caturla,et al.  Defect production in collision cascades in elemental semiconductors and fcc metals , 1998 .

[11]  C. Rycroft,et al.  Analysis of granular flow in a pebble-bed nuclear reactor. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S. Ohr Elastic fields of a dislocation loop near a stress‐free surface , 1978 .

[13]  R. Doerner,et al.  Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions , 2008 .

[14]  W. D. Wilson,et al.  Self-trapping of helium in metals , 1981 .

[15]  J. Evans,et al.  Direct evidence for helium bubble growth in molybdenum by the mechanism of loop punching , 1981 .

[16]  D. Bacon,et al.  The dislocation loop near a free surface , 1970 .

[17]  J. Wallenius,et al.  Molecular dynamics simulation of displacement cascades in Fe–Cr alloys , 2004 .

[18]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  J. Baštecká Interaction of dislocation loop with free surface , 1964 .

[21]  K. Tokunaga,et al.  Micron-Bubble Formation on Polycrystal Tungsten due to Low-Energy and High-Flux Helium Plasma Exposure , 2005 .

[22]  Wataru Sakaguchi,et al.  Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions , 2009 .

[23]  Molecular dynamics studies of temperature effects on low energy helium bombardments on tungsten surfaces , 2012 .

[24]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[25]  K. Nordlund,et al.  MD simulations of onset of tungsten fuzz formation under helium irradiation , 2013 .

[26]  N. Yoshida,et al.  Microstructure evolution in tungsten during low-energy helium ion irradiation , 2000 .

[27]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[28]  Brian D. Wirth,et al.  Helium bubble bursting in tungsten , 2013 .

[29]  Graeme Ackland Comprehensive Nuclear Materials , 2012 .

[30]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[31]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[32]  B. Wirth,et al.  Molecular dynamics simulations on the effect of sub-surface helium bubbles on the sputtering yield of tungsten , 2013 .

[33]  K. Nordlund,et al.  The Depths of Hydrogen and Helium Bubbles in Tungsten: A Comparison , 2006 .

[34]  D. Duffy Modeling plasma facing materials for fusion power , 2009 .

[35]  G. Wright,et al.  Helium effects on tungsten under fusion-relevant plasma loading conditions , 2013 .

[36]  Blas P. Uberuaga,et al.  The parallel replica dynamics method – Coming of age , 2015 .

[37]  B. Wirth,et al.  Molecular dynamics simulation of the effect of sub-surface helium bubbles on hydrogen retention in tungsten , 2013 .