Fluid‐fluid interactions and hydrodynamics in agitated dispersions: A simulation model

A model which accounts for complex fluid-fluid interactions and hydrodynamic effects in a fully baffled turbulently agitated dispersed phase system for batch, semi-batch, or continuous operation is developed. Both micromixing and macromixing effects on particle size distributions are taken into account. Coalescence and breakage functions are developed and examples are given of the normalized number and/or volume size distributions for various vessel regions. Calculated distributions are compared with experimental data to estimate values of coalescence and breakage parameters. Effects of coalescence, breakage, and system parameters on transient and steady state distributions are determined. On a mis au point un modele qui tient compte des actions reciproques et complexes de deux fluides dans un systeme a phase dispersee, completement en chicane et agite d'une maniere turbulente; ce modele a ete employe pour des operations continues, semi-continues et discontinues. On a considere a la fois les effets du micro-melange et du macro-melange sur la distribution des dimensions des particules. Des fonctions de coalescence et de fragmentation ont pris naissance et l'on donne des exemples du nombre normalise et/ou de la distribution des dimensions des particules en volume pour diverses regions du recipient. On a compare les distribution calculees avec les resultats experimentaux pour evalner les parametres de coalescence et de fragmentation. On a determine les effets des parametres de coalescence et de fragmentation ainsi que ceux du systeme sur la distribution des regimes transitoires et permanents.

[1]  B. Gal-or,et al.  Hydrodynamics of an ensemble of drops (or bubbles) in the presence or absence of surfactants , 1968 .

[2]  Harvey D. Mendelson The prediction of bubble terminal velocities from wave theory , 1967 .

[3]  J. Rennie,et al.  Gas dispersion in agitated tanks , 1968 .

[4]  I. Dunn,et al.  A Monte Carlo coalescence model for reaction with dispersion in a tubular reactor , 1970 .

[5]  F. B. Sprow Drop size distributions in strongly coalescing agitated liquid‐liquid systems , 1967 .

[6]  K. J. Valentas,et al.  Influence of Droplet Size-Age Distribution on Rate Processes in Dispersed-Phase Systems , 1968 .

[7]  Lawrence L. Tavlarides,et al.  Bubble and drop phenomena , 1969 .

[8]  H. Hoelscher,et al.  A transient response method for a simple evaluation of mass transfer in liquids and dispersions: Experimental test of a mathematical model for an ensemble of bubbles , 1967 .

[9]  DESIGN OF CONTINUOUS AND BATCH POLYMERIZATION PROCESSES , 1970 .

[10]  Shuichi Aiba,et al.  Flow patterns of liquids in agitated vessels , 1958 .

[11]  N. Amundson,et al.  An analysis of chemical reactor stability and control—XIII Segregated two phase systems , 1967 .

[12]  Neal R. Amundson,et al.  Analysis of Breakage in Dispersed Phase Systems , 1966 .

[13]  Coalescence rates in a continuous-flow dispersed phase system , 1964 .

[14]  J. Knudsen,et al.  Drop‐size distributions produced by turbulen pipe flow of immiscible liquids , 1970 .

[15]  W. Howarth Measurement of coalescence frequency in an agitated tank , 1967 .

[16]  A. Madden,et al.  Coalescence frequencies in agitated liquid‐liquid systems , 1962 .

[17]  H. G. Schwartzberg,et al.  Fluid and Particle Motion in Turbulent Stirred Tanks. Fluid Motion , 1968 .

[18]  N. Amundson,et al.  Breakage and Coalescence in Dispersed Phase Systems , 1966 .

[19]  R. S. Miller,et al.  Dispersed Phase Mixing: II. Measurements in Organic Dispersed Systems , 1963 .

[20]  J. Hinze Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes , 1955 .

[21]  R. Curl Dispersed phase mixing: I. Theory and effects in simple reactors , 1963 .

[22]  Octave Levenspiel,et al.  A Monte Carlo treatment for reacting and coalescing dispersed phase systems , 1965 .

[23]  G. Marrucci Communication. Rising Velocity of Swarm of Spherical Bubbles , 1965 .

[24]  L. Tavlarides,et al.  A general analysis of multicomponent mass transfer with simultaneous reversible chemical reactions in multiphase systems , 1969 .

[25]  R. E. Treybal,et al.  Continuous‐phase mass‐transfer coefficients for liquid extraction in agitated vessels , 1968 .

[26]  R. Adler,et al.  A stochastic mixing model for homogeneous, turbulent, tubular reactors , 1967 .

[27]  Hsiao Tsung Chen,et al.  Drop size distribution in agitated liquid‐liquid systems , 1967 .

[28]  J. P. Ward,et al.  Turbulent flow of unstable liquid‐liquid dispersions: Drop sizes and velocity distributions , 1967 .

[29]  H. Hoelscher,et al.  A mathematical treatment of the effect of particle size distribution on mass transfer in dispersions , 1966 .

[30]  W. Resnick,et al.  Mass transfer from gas bubbles in an agitated vessel with and without simultaneous chemical reaction , 1964 .