Robust multilevel solvers for high-contrast anisotropic multiscale problems

A robust multilevel method for computing the solution of a scalar elliptic equation with anisotropic highly varying tensor coefficients is presented. The method, which belongs to the class of nonlinear algebraic multilevel iterations (AMLIs), uses an abstract framework for general symmetric positive definite bilinear forms previously presented in another publication by the author. The crucial ingredient for obtaining robustness with respect to the variations in the coefficients and the anisotropies is the design of a nested sequence of spaces based on local generalized eigenvalue problems. A discussion on how to achieve large coarsening factors in this sequence of spaces, which is desirable in terms of computational complexity, is included. Particular emphasis is put on how to handle the situation when the computed generating sets of the nested spaces are not minimal, i.e., do not constitute bases. Several numerical examples are provided verifying the theoretically established robustness results.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[3]  Barbara Kaltenbacher,et al.  Lectures on advanced computational methods in mechanics , 2007 .

[4]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[5]  Jinchao Xu,et al.  Comparative Convergence Analysis of Nonlinear AMLI-Cycle Multigrid , 2012, SIAM J. Numer. Anal..

[6]  Joerg Willems,et al.  Robust Multilevel Methods for General Symmetric Positive Definite Operators , 2014, SIAM J. Numer. Anal..

[7]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[8]  Rolf Dach,et al.  Technical Report 2012 , 2013 .

[9]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[10]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[11]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[12]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[13]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[14]  P. Fuhrmann A Polynomial Approach to Linear Algebra , 1996 .

[15]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[16]  Johannes K. Kraus,et al.  An algebraic preconditioning method for M‐matrices: linear versus non‐linear multilevel iteration , 2002, Numer. Linear Algebra Appl..

[17]  Yalchin Efendiev,et al.  Multiscale Domain Decomposition Preconditioners for Anisotropic High-Contrast Problems , 2013, Domain Decomposition Methods in Science and Engineering XX.

[18]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[19]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[20]  Panayot S. Vassilevski,et al.  Algebraic Multilevel Preconditioning of Anisotropic Elliptic Problems , 1994, SIAM J. Sci. Comput..

[21]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[22]  T. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations (Lecture Notes in Computational Science and Engineering) , 2008 .

[23]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[24]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[25]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[26]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[27]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[28]  Todd Arbogast,et al.  Homogenization-Based Mixed Multiscale Finite Elements for Problems with Anisotropy , 2011, Multiscale Model. Simul..

[29]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[30]  Yalchin Efendiev,et al.  Robust Two-level Domain Decomposition Preconditioners for High-contrast Anisotropic Flows in Multiscale Media , 2012, Comput. Methods Appl. Math..

[31]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[32]  Svetozar Margenov,et al.  On Multilevel Preconditioners which are Optimal with Respect to Both Problem and Discretization Parameters , 2003 .