Three-dimensional constitutive model for shape memory alloys based on microplane model

Abstract A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress–strain subloops and tension–compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.

[1]  Byung H. Oh,et al.  Microplane Model for Progressive Fracture of Concrete and Rock , 1985 .

[2]  D. McDowell,et al.  Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and , 1999 .

[3]  Ignacio Carol,et al.  Damage and plasticity in microplane theory , 1997 .

[4]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[5]  H. Maier,et al.  Stress-induced martensitic phase transformations in polycrystalline CuZnAl shape memory alloys under different stress states , 1998 .

[6]  H. Tobushi,et al.  Phenomenological analysis of plateaus on stress-strain hysteresis in TiNi shape memory alloy wires , 1996 .

[7]  Pere C. Prat,et al.  Microplane Model for Triaxial Deformation of Saturated Cohesive Soils , 1991 .

[8]  Mark Balzer,et al.  Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy , 1996 .

[9]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[10]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model , 2000 .

[11]  D. Lagoudas,et al.  Thermomechanical Response of Shape Memory Composites , 1994 .

[12]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[13]  James G. Boyd,et al.  Micromechanics of Active Composites With SMA Fibers , 1994 .

[14]  T. E. Dye,et al.  An experimental investigation of the behavior of Nitinol , 1990 .

[15]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[16]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[17]  K. Tanaka,et al.  A thermomechanical description of materials with internal variables in the process of phase transitions , 1982 .

[18]  Investigation of the damping behavior of a vibrating shape memory alloy rod using a micromechanical model , 1996 .

[19]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[20]  Sanjay Govindjee,et al.  A computational model for shape memory alloys , 2000 .

[21]  T. Pence,et al.  Two Variant Modeling of Shape Memory Materials: Unfolding a Phase Diagram Triple Point , 1998 .

[22]  F. Auricchio,et al.  Generalized plasticity and shape-memory alloys , 1996 .

[23]  Hisaaki Tobushi,et al.  Transformation start lines in TiNi and Fe-based shape memory alloys after incomplete transformations induced by mechanical and/or thermal loads , 1995 .

[24]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[25]  Chen Liang The constitutive modeling of shape memory alloys , 1990 .

[26]  C. Lexcellent,et al.  Micromechanical modelling for tension–compression pseudoelastic behavior of AuCd single crystals , 1998 .

[27]  Thomas J. Pence,et al.  A constitutive model for hysteretic phase transition behavior , 1994 .

[28]  C. Lexcellent,et al.  Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy , 1997 .

[29]  T. Lin,et al.  Theoretical plastic stress-strain relationship of a polycrystal and the comparisons with the von Mises and the Tresca plasticity theories , 1966 .

[30]  Jan Van Humbeeck,et al.  Simulation of transformation hysteresis , 1990 .

[31]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[32]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[33]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[34]  C. Liang,et al.  A multi-dimensional constitutive model for shape memory alloys , 1992 .

[35]  Z. Bažant,et al.  Microplane model for triaxial deformation of soils , 1989 .

[36]  R. J. Crawford,et al.  Mechanics of engineering materials , 1986 .

[37]  T. Lin,et al.  Theoretical plastic distortion of a polycrystalline aggregate under combined and reversed stresses , 1965 .

[38]  R. L. Smith Putting a damper on resonant frequencies , 1991 .

[39]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[40]  O. Zienkiewicz,et al.  Time-dependent multilaminate model of rocks—a numerical study of deformation and failure of rock masses , 1977 .

[41]  Zdenek P. Bazant,et al.  Microplane Constitutive Model and Metal Plasticity , 2000 .

[42]  Pere C. Prat,et al.  Creep of Anisotropic Clay: New Microplane Model , 1987 .

[43]  R. Hill Generalized constitutive relations for incremental deformation of metal crystals by multislip , 1966 .

[44]  E. Sacco,et al.  A temperature-dependent beam for shape-memory alloys: Constitutive modelling, finite-element implementation and numerical simulations , 1999 .

[45]  Zdenek P. Bazant,et al.  Microplane Model for Brittle‐Plastic Material: II. Verification , 1988 .

[46]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[47]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[48]  Thomas J. Pence,et al.  A Thermomechanical Model for a One Variant Shape Memory Material , 1994 .

[49]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[50]  Miinshiou Huang,et al.  A Multivariant model for single crystal shape memory alloy behavior , 1998 .

[51]  Bernard Budiansky,et al.  A Mathematical Theory of Plasticity Based on the Concept of Slip , 1949 .

[52]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[53]  Z. Bažant,et al.  A Time-Dependent Microplane Model for Creep of Cohesive Soils , 1991 .

[54]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[55]  George J. Weng,et al.  Martensitic transformation and stress-strain relations of shape-memory alloys , 1997 .

[56]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[57]  E. J. Graesser,et al.  Shape‐Memory Alloys as New Materials for Aseismic Isolation , 1991 .

[58]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[59]  Pere C. Prat,et al.  Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain , 1996 .

[60]  Zdenek P. Bazant,et al.  MICROPLANE MODEL FOR STRAIN-CONTROLLED INELASTIC BEHAVIOUR. , 1984 .

[61]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[62]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[63]  Ferhun C. Caner,et al.  Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress , 2000 .

[64]  P. Bazant,et al.  Efficient Numerical Integration on the Surface of a Sphere , 1986 .