MOLECULAR CLUMPS AND INFRARED CLUSTERS IN THE S247, S252, AND BFS52 REGIONS

We present results of the observations carried out toward the S247, S252, and BFS52 H II regions with various molecular lines using the 1.85?m radio telescope and the 45?m telescope at Nobeyama Radio Observatory. There are at least 11 young infrared clusters (IR clusters) within the observed region. We found that there are two velocity components in 12CO?(J = 2-1), and also that their spatial distributions show an anti-correlation. The IR clusters are located at their interfaces, suggesting that two distinct clouds with different velocities are colliding with each other, which may have induced the cluster formation. Based on 13CO?(J = 1-0) and C18O (J = 1-0) observations, we identified 16 clumps in and around the three H II regions. Eleven of the clumps are associated with the IR clusters and the other five clumps are not associated with any known young stellar objects. We investigated variations in the velocity dispersions of the 16 clumps as a function of the distance from the center of the clusters or the clumps. Clumps with clusters tend to have velocity dispersions that increase with distance from the cluster center, while clumps without clusters show a flat velocity dispersion over the clump extents. A 12CO?outflow has been found in some of the clumps with IR clusters but not in the other clumps, supporting a strong relation of these clumps to the broader velocity dispersion region. We also estimated a mean star formation efficiency of ~30% for the clumps with IR clusters in the three H II regions.

[1]  K. Menten,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. I. S 252 & G232.6+1.0 , 2008, 0811.0595.

[2]  E. Bica,et al.  New infrared star clusters and candidates in the Galaxy detected with 2MASS , 2001, astro-ph/0107286.

[3]  Bangalore,et al.  A multiwavelength study of the massive star-forming region IRAS 06055+2039 (RAFGL 5179) , 2006, astro-ph/0601535.

[4]  Anthony Peter Whitworth,et al.  High resolution simulations of clump-clump collisions using SPH with Particle Splitting , 2001 .

[5]  K. Kawaguchi,et al.  Mapping observations of sulfur-containing carbon-chain molecules in Taurus Molecular Cloud 1 (TMC-1) , 1992 .

[6]  E. Keto,et al.  The youngest stellar clusters Clusters associated with massive protostellar candidates , 2005, astro-ph/0512266.

[7]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[8]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[9]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[10]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[11]  R. W. Haas,et al.  Absolute calibration of millimeter-wavelength spectral lines , 1976 .

[12]  S. Sharpless A Catalogue of H II Regions. , 1959 .

[13]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[14]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[15]  J. Carpenter 2MASS Observations of the Perseus, Orion A, Orion B, and Monoceros R2 Molecular Clouds , 2000, astro-ph/0009118.

[16]  J. Claussen,et al.  An Unbiased Survey of Molecular Outflows Associated with Bright Far-Infrared Sources , 1986 .

[17]  Zhi-Yun Li,et al.  Cluster Formation in Protostellar Outflow-driven Turbulence , 2005, astro-ph/0512278.

[18]  E. Herbst,et al.  Molecular Evolution in Collapsing Prestellar Cores , 2001, astro-ph/0202061.

[19]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[20]  K. Menten,et al.  AMMONIA AND CO OBSERVATIONS TOWARD LOW-LUMINOSITY 6.7 GHz METHANOL MASERS , 2010, 1007.1854.

[21]  E. Bica,et al.  Uniform detection of the pre‐main‐sequence population in the five embedded clusters related to the H ii region NGC 2174 (Sh2‐252) , 2011, 1103.2293.

[22]  Zhi-Yun Li,et al.  Protostellar Turbulence Driven by Collimated Outflows , 2007, astro-ph/0703152.

[23]  J. Whiteoak,et al.  A Large-Scale Cloud Collision in the Galactic Center Molecular Cloud near Sagittarius B2 , 1994 .

[24]  E. Churchwell,et al.  Bipolar Molecular Outflows in Massive Star Formation Regions , 1996 .

[25]  M. A. Trinidad,et al.  HIGH-RESOLUTION STUDY OF THE MASSIVE STAR-FORMING REGION IRAS 06061+2151 , 2010 .

[26]  Manash R. Samal,et al.  Optical and near-infrared survey of the stellar contents associated with the star-forming complex Sh2-252 , 2012, 1212.6594.

[27]  Y. Fukui,et al.  High-Resolution Studies of the Dense Molecular Cores toward Massive Star-Forming Regions , 2006 .

[28]  H. Ogawa,et al.  The Most Luminous Protostars in Molecular Clouds: A Hint to Understand the Stellar Initial Mass Function , 1999 .

[29]  Ray P. Norris,et al.  Galactic methanol masers at 6.6 GHz , 1995 .

[30]  E. Bergin,et al.  Chemical Evolution in Preprotostellar and Protostellar Cores , 1997 .

[31]  I. Zinchenko,et al.  Studies of dense molecular cores in regions of massive star formation - VII. Core properties on the galactic scale , 1998 .

[32]  G. Fuller,et al.  Near-infrared and optical observations of IRAS sources in and near dense cores , 1987 .

[33]  B. L. Ulich,et al.  Recommendations for calibration of millimeter-wavelength spectral line data. , 1981 .

[34]  T. Ray,et al.  Observations of Shocked H2 and Entrained CO in Outflows from Luminous Young Stars , 1998 .

[35]  A. Stark,et al.  Catalog of CO radial velocities toward galactic H II regions , 1982 .

[36]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[37]  T. Hirota,et al.  MOLECULAR LINE OBSERVATIONS OF MCLD 123.5+24.9 IN THE POLARIS CIRRUS , 2012 .

[38]  B. G. Anandarao,et al.  Detection of knots and jets in IRAS 06061+2151 , 2004 .

[39]  J. Forbrich,et al.  A Millimeter Continuum Survey for Massive Protoclusters in the Outer Galaxy , 2005, astro-ph/0508191.

[40]  F. Schloerb,et al.  ANATOMY OF THE GEMINI OB1 MOLECULAR CLOUD COMPLEX , 1995 .

[41]  R. Snell,et al.  Molecular outflows associated with a flux-limited sample of bright far-infrared sources , 1990 .

[42]  R. Indebetouw,et al.  A WIYN NEAR-INFRARED INVESTIGATION OF THREE MASSIVE STAR-FORMING REGIONS , 2008 .

[43]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[44]  Jun Jugaku,et al.  Star Forming Regions , 1987 .

[45]  T. Sawada,et al.  On-The-Fly Observing System of the Nobeyama 45-m and ASTE 10-m Telescopes , 2007, 0712.1283.

[46]  Takeshi Sakai,et al.  A New 100-GHz Band Front-End System with a Waveguide-Type Dual-Polarization Sideband-Separating SIS Receiver for the NRO 45-m Radio Telescope , 2008, 0804.0480.

[47]  Stuart A. Kurtz,et al.  Ultracompact H II Regions. II. New High-Resolution Radio Images , 1994 .

[48]  J. Whiteoak,et al.  Cloud Collision-induced Star Formation in Sagittarius B2. I. Large-Scale Kinematics , 2000 .

[49]  C. Lada,et al.  Molecular-line observations of the S252 /NGC 2175/ star-forming complex , 1979 .

[50]  M. Saito,et al.  Dense Molecular Clumps Associated with Young Clusters in Massive Star-forming Regions , 2007 .

[51]  M. Meyer,et al.  Intrinsic near-infrared excesses of T tauri stars: Understanding the classical T tauri star locus , 1997 .

[52]  T. Umemoto,et al.  Detection of SiO Emission in the L1157 Dark Cloud , 1992 .

[53]  K. Fujisawa,et al.  STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS? , 2012, Proceedings of the International Astronomical Union.

[54]  Brazil,et al.  A Catalogue of infrared star clusters and stellar groups , 2003 .

[55]  Molecular Clouds in the Trifid Nebula M20: Possible Evidence for a Cloud-Cloud Collision in Triggering the Formation of the First Generation Stars , 2011, 1106.3603.

[56]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[57]  F. Peter Schloerb,et al.  STAR-FORMATION IN THE GEMINI OB1 MOLECULAR CLOUD COMPLEX , 1995 .

[58]  C. Brunt The Universality of Turbulence in the Molecular Interstellar Medium and Its Exploitation as a Distance Estimator , 2003 .

[59]  R. Kawabe,et al.  A MAPPING SURVEY OF DENSE CLUMPS ASSOCIATED WITH EMBEDDED CLUSTERS. II. CAN CLUMP–CLUMP COLLISIONS INDUCE STELLAR CLUSTERS? , 2010, 1007.0042.

[60]  A. Kus,et al.  A survey of the 6.7 GHz methanol maser emission from IRAS sources - I. Data , 2000 .

[61]  R. Kawabe,et al.  A MAPPING SURVEY OF DENSE CLUMPS ASSOCIATED WITH EMBEDDED CLUSTERS: EVOLUTIONARY STAGES OF CLUSTER-FORMING CLUMPS , 2009, 0909.1132.

[62]  P. Massey,et al.  Small Galactic H II regions. I. Spectral classifications of massive stars , 1990 .

[63]  Jonathan P. Williams,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD , 2010, 1005.4969.

[64]  P. Conti,et al.  SPECTROSCOPIC STUDIES OF O-TYPE STARS. I. CLASSIFICATION AND ABSOLUTE MAGNITUDES. , 1971 .

[65]  A. Walsh,et al.  Star-forming protoclusters associated with methanol masers , 2004 .

[66]  E. Churchwell,et al.  High-Velocity Molecular Gas from High-Mass Star Formation Regions , 1996 .