On linear and nonlinear tracking of the wheeled mobile robot

This paper presents two different trajectory tracking control strategies for wheeled mobile robot. The first strategy presents a time-varying linear feedback control law and the second strategy is based on State Dependent Ricatti Equation (SDRE) method. Numerical simulation results indicated that both methods can be successfully used for control of the robot system.

[1]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[2]  José Manoel Balthazar,et al.  On control and synchronization in chaotic and hyperchaotic systems via linear feedback control , 2008 .

[3]  Zhihua Qu,et al.  Global-Stabilizing Near-Optimal Control Design for Nonholonomic Chained Systems , 2006, IEEE Transactions on Automatic Control.

[4]  J. Cloutier,et al.  Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method , 1998 .

[5]  Tayfun Çimen,et al.  State-Dependent Riccati Equation (SDRE) Control: A Survey , 2008 .

[6]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[7]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[8]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[9]  S. Shankar Sastry,et al.  Stabilization of trajectories for systems with nonholonomic constraints , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[10]  Roger W. Brockett,et al.  Optimal regulation and reinforcement learning for the nonholonomic integrator , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[11]  Alessandro Astolfi Discontinuous Control of the Brockett Integrator , 1998, Eur. J. Control.

[12]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[13]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[14]  Richard M. Murray,et al.  Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .

[15]  Mario Sznaier,et al.  On the recoverability of nonlinear state feedback laws by extended linearization control techniques , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[16]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[17]  G. Cook,et al.  Suboptimal control for the nonlinear quadratic regulator problem , 1975, Autom..

[18]  J. C. Alexander,et al.  On the Kinematics of Wheeled Mobile Robots , 1990, Autonomous Robot Vehicles.

[19]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[20]  J. D. Pearson Approximation Methods in Optimal Control I. Sub-optimal Control† , 1962 .

[21]  Zhong-Ping Jiang Lyapunov design of global state and output feedback trackers for non-holonomic control systems , 2000 .

[22]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[23]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[24]  Sergey V. Drakunov,et al.  Stabilization and tracking in the nonholonomic integrator via sliding modes , 1996 .