Plasma enhanced atomic layer deposition of SiNx:H and SiO2

As the nanoelectronics industry looks to transition to both three dimensional transistor and interconnect technologies at the <22 nm node, highly conformal dielectric coatings with precise thickness control are increasingly being demanded. Plasma enhanced chemical vapor deposition (PECVD) currently fills this role for most applications requiring low temperature processing but does not always meet step coverage and thickness precision requirements. The authors present results for a hybrid technique, plasma enhanced atomic layer deposition (PEALD), which utilizes typical PECVD process gases and tooling while delivering improved topography coverage and thickness control. Specifically, the authors show that alternating SiH4 gas/N2 plasma exposures applied in an atomic layer deposition sequence can be used to deposit SiNx:H films in a self-limiting fashion with improved conformality and superior performance as a moisture barrier. PEALD of SiO2 using alternating SiH4 and CO2 plasma exposures is further demonstr...

[1]  Hcm Harm Knoops,et al.  Conformality of Plasma-Assisted ALD: Physical Processes and Modeling , 2010 .

[2]  Wonjun Lee,et al.  Atomic Layer Deposition and Properties of Silicon Oxide Thin Films Using Alternating Exposures to SiH2Cl2 and O3 , 2010 .

[3]  S. King,et al.  Intrinsic stress effect on fracture toughness of plasma enhanced chemical vapor deposited SiNx:H films , 2010 .

[4]  J. Bielefeld,et al.  Demonstration of a reliable high-performance and yielding Air gap interconnect process , 2010, 2010 IEEE International Interconnect Technology Conference.

[5]  P. Reyes,et al.  Langmuir Probe and Optical Emission Spectroscopy Studies of Low-Pressure Gas Mixture of CO2 and N2 , 2010 .

[6]  Sean W. King,et al.  Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz: H system , 2009, Microelectron. Reliab..

[7]  U. Gösele,et al.  A practical, self-catalytic, atomic layer deposition of silicon dioxide. , 2008, Angewandte Chemie.

[8]  Ying Li,et al.  Methods of producing plasma enhanced chemical vapor deposition silicon nitride thin films with high compressive and tensile stress , 2008 .

[9]  Wmm Erwin Kessels,et al.  Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor , 2007 .

[10]  Rui Huang,et al.  Effect of passivation on stress relaxation in electroplated copper films , 2006 .

[11]  S. Seutter,et al.  Pattern-dependent microloading and step coverage of silicon nitride thin films deposited in a single-wafer thermal chemical vapor deposition chamber , 2005 .

[12]  M. Zakaullah,et al.  Optical Emission Spectroscopy of Abnormal Glow Region in Nitrogen Plasma , 2005 .

[13]  P. Gamallo,et al.  Adsorption of atomic oxygen and nitrogen at beta-cristobalite (100): a density functional theory study. , 2005, The journal of physical chemistry. B.

[14]  Jin Ho Lee,et al.  Low‐Temperature Growth of SiO2 Films by Plasma‐Enhanced Atomic Layer Deposition , 2005 .

[15]  W. Kessels,et al.  The growth kinetics of silicon nitride deposited from the SiH4-N2 reactant mixture in a remote plasma , 2004 .

[16]  C. Musgrave,et al.  Surface reaction mechanisms for atomic layer deposition of silicon nitride , 2004 .

[17]  L. Gedvilas,et al.  Conformal thin-film silicon nitride deposited by hot-wire chemical vapor deposition , 2004 .

[18]  Bok Heon Kim,et al.  Development and Characterization of a PECVD Silicon Nitride for Damascene Applications , 2004 .

[19]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[20]  R. Waltman,et al.  Coverage and properties of a-SiNx hard disk overcoat , 2003 .

[21]  K. Maeda,et al.  Properties of Low-k Copper Barrier SiOCH Film Deposited by PECVD Using Hexamethyldisiloxane and N 2 O , 2003 .

[22]  A. Kellock,et al.  Growth of cubic-TaN thin films by plasma-enhanced atomic layer deposition , 2002 .

[23]  L. Luo,et al.  Moisture barrier properties of plasma enhanced chemical vapor deposited SiCxNy films on polyethylene naphthalate sheets and epoxy molding compound , 2002 .

[24]  C. Park,et al.  Characteristics of ZrO2 gate dielectric deposited using Zr t–butoxide and Zr(NEt2)4 precursors by plasma enhanced atomic layer deposition method , 2002 .

[25]  C. Musgrave,et al.  Density Functional Theory Study of Atomic Nitrogen on the Si(100)−(2 × 1) Surface , 2002 .

[26]  T. Yoshimoto,et al.  Low-temperature formation of silicon nitride gate dielectrics by atomic-layer deposition , 2001 .

[27]  Sang-Won Kang,et al.  Increment of the Dielectric Constant of Ta2 O 5 Thin Films by Retarding Interface Oxide Growth on Si Substrates , 2001 .

[28]  Yoshitaka Tsunashima,et al.  Film Properties of Low‐k Silicon Nitride Films Formed by Hexachlorodisilane and Ammonia , 2000 .

[29]  J. Gale,et al.  Fullab initiogeometry optimization of all known crystalline phases ofSi3N4 , 2000 .

[30]  Steven M. George,et al.  Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions , 2000 .

[31]  W. Hansch,et al.  Characterization of silicon/oxide/nitride layers by x-ray photoelectron spectroscopy , 1999 .

[32]  M. Harada,et al.  Nitriding of silicon by using an electron cyclotron resonance nitrogen plasma , 1998 .

[33]  Sung-Hoon Lee,et al.  First-principles study of the dissociative adsorption of NH 3 on the Si(100) surface , 1998 .

[34]  Hideki Matsumura,et al.  Formation of Silicon-Based Thin Films Prepared by Catalytic Chemical Vapor Deposition (Cat-CVD) Method , 1998 .

[35]  Y. Shioya,et al.  Analysis of the Superior Water Blocking Ability of Electron Cyclotron Resonance‐Plasma SiO2 Film , 1998 .

[36]  S. Hattangady,et al.  Surface nitridation of silicon dioxide with a high density nitrogen plasma , 1997 .

[37]  K. Shibahara,et al.  Atomic layer controlled deposition of silicon nitride with self‐limiting mechanism , 1996 .

[38]  Y. Uchida,et al.  Atomic-Layer Chemical-Vapor-Deposition of SiO_2 by Cyclic Exposures of CH_3OSi(NCO)_3 and H_2O_2 , 1995 .

[39]  S. Dzioba,et al.  Dielectric thin film deposition by electron cyclotron resonance plasma chemical vapor deposition for optoelectronics , 1994 .

[40]  A. Stamper,et al.  Characterization of Plasma‐Enhanced Chemical Vapor Deposited Nitride Films Used in Very Large Scale Integrated Applications , 1993 .

[41]  S. Koseki,et al.  Theoretical study on silicon‐nitride film growth: Ab initio molecular orbital calculations , 1992 .

[42]  J. Janata,et al.  Effect of thermal treatment of passivation integrity of chemical vapor deposition silicon nitride , 1992 .

[43]  J. A. Taylor The mechanical properties and microstructure of plasma enhanced chemical vapor deposited silicon nitride thin films , 1991 .

[44]  Donald L. Smith,et al.  Mechanism of SiNxHy deposition from N2–SiH4 plasma , 1990 .

[45]  S. Gates,et al.  Surface reactions in Si chemical vapor deposition from silane , 1990 .

[46]  S. Gates,et al.  Decomposition of silane on Si(111)‐(7×7) and Si(100)‐(2×1) surfaces below 500 °C , 1990 .

[47]  Donald L. Smith,et al.  Mechanism of SiN x H y Deposition from NH 3 ‐ SiH4 Plasma , 1990 .

[48]  Tsuneo Mitsuyu,et al.  Silicon nitride thin films prepared by the electron cyclotron resonance plasma chemical vapor deposition method , 1989 .

[49]  W. J. Choyke,et al.  The Adsorption and Decomposition of NH3 on Si(100) - Detection of the NH2(a) Species , 1989 .

[50]  S. Gates Adsorption kinetics of SiH4, Si2H6 and Si3H8 on the Si(111)-(7×7) surface , 1988 .

[51]  A. Morimoto,et al.  Stability of plasma-deposited SiO2 films evaluated using stress and IR measurements , 1987 .

[52]  W. Claassen,et al.  Ion bombardment-induced mechanical stress in plasma-enhanced deposited silicon nitride and silicon oxynitride films , 1987 .

[53]  Masahiko Maeda,et al.  Electrical properties and their thermal stability for silicon nitride films prepared by plasma‐enhanced deposition , 1982 .

[54]  R. Buser,et al.  Initial Processes in CO2 Glow Discharges , 1970 .

[55]  H. D. Smyth,et al.  The Ionization of Carbon Dioxide by Electron Impact , 1930 .