Dynamics of vortex dipoles in confined BoseEinstein condensates

Abstract We present a systematic theoretical analysis of the motion of a pair of straight counter-rotating vortex lines within a trapped Bose–Einstein condensate. We introduce the dynamical equations of motion, identify the associated conserved quantities, and illustrate the integrability of the ensuing dynamics. The system possesses a stationary equilibrium as a special case in a class of exact solutions that consist of rotating guiding-center equilibria about which the vortex lines execute periodic motion; thus, the generic two-vortex motion can be classified as quasi-periodic. We conclude with an analysis of the linear and nonlinear stability of these stationary and rotating equilibria.

[1]  Alexander L. Fetter Rotating trapped Bose-Einstein condensates , 2009 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  J. Gollub,et al.  Vortex Flow in Nature and Technology , 1985 .

[4]  Physics Letters , 1962, Nature.

[5]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[6]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[7]  Paul K. Newton,et al.  Vortex Lattice Theory: A Particle Interaction Perspective , 2009, SIAM Rev..

[8]  Ionut Danaila,et al.  Giant vortices in combined harmonic and quartic traps (6 pages) , 2004 .

[9]  D. Whitaker,et al.  Sphagnum Moss Disperses Spores with Vortex Rings , 2010, Science.

[10]  Stavros Komineas,et al.  Vortex dipole in a trapped two-dimensional Bose-Einstein condensate , 2008 .

[11]  Víctor M. Pérez-García,et al.  Stable vortex dipoles in nonrotating Bose-Einstein condensates , 2003 .

[12]  D. Hall,et al.  Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein Condensate , 2010, Science.

[13]  Mikko Mottonen,et al.  Size and dynamics of vortex dipoles in dilute Bose-Einstein condensates , 2010, 1011.1661.

[14]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[15]  M. Fisher,et al.  Reconnection dynamics for quantized vortices , 2008, 0810.5521.

[16]  M. M. Salomaa,et al.  Stationary vortex clusters in nonrotating Bose-Einstein condensates , 2005 .

[17]  Ricardo Carretero-González,et al.  Bifurcations, stability, and dynamics of multiple matter-wave vortex states , 2010 .

[18]  L. Torner,et al.  Globally linked vortex clusters in trapped wave fields. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[20]  Ashton S. Bradley,et al.  Observation of vortex dipoles in an oblate Bose-Einstein condensate. , 2009, Physical review letters.

[21]  Ionut Danaila Three-dimensional vortex structure of a fast rotating Bose-Einstein condensate with harmonic-plus-quartic confinement , 2005 .

[22]  V. S. Bagnato,et al.  Three-vortex configurations in trapped Bose-Einstein condensates , 2009, 0907.1584.

[23]  I. G. Kevrekidis,et al.  Vortices in Bose-Einstein Condensates: Some Recent Developments , 2004 .

[24]  M. Mottonen,et al.  Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates , 2006 .

[25]  Ionut Danaila,et al.  Three-dimensional vortex configurations in a rotating Bose Einstein condensate , 2003 .

[26]  Ricardo Carretero-González,et al.  Emergent Nonlinear Phenomena in Bose-Einstein Condensates , 2008 .