Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters

Many processes in biology, chemistry, physics, medicine, and engineering are modeled by a system of differential equations. Such a system is usually characterized via unknown parameters and estimating their ‘true’ value is thus required. In this paper we focus on the quite common systems for which the derivatives of the states may be written as sums of products of a function of the states and a function of the parameters. For such a system linear in functions of the unknown parameters we present a necessary and sufficient condition for identifiability of the parameters. We develop an estimation approach that bypasses the heavy computational burden of numerical integration and avoids the estimation of system states derivatives, drawbacks from which many classic estimation methods suffer. We also suggest an experimental design for which smoothing can be circumvented. The optimal rate of the proposed estimators, i.e., their √n-consistency, is proved and simulation results illustrate their excellent finite sample performance and compare it to other estimation approaches.

[1]  Peter P. Valko,et al.  A direct-indirect procedure for estimation of kinetic parameters , 1986 .

[2]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[3]  Azael Fabregat,et al.  Testing a predictor-corrector integral method for estimating parameters in complex kinetic systems described by ordinary differential equations , 1997 .

[4]  Jianqing Fan,et al.  On automatic boundary corrections , 1997 .

[5]  W. Härdle,et al.  Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands , 1988 .

[6]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[7]  Richard Bellman,et al.  The use of splines with unknown end points in the identification of systems , 1971 .

[8]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[9]  Hulin Wu,et al.  Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.

[10]  Xiaohua Xia,et al.  Identifiability of nonlinear systems with application to HIV/AIDS models , 2003, IEEE Trans. Autom. Control..

[11]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[12]  L. Goldstein,et al.  Optimal Plug-in Estimators for Nonparametric Functional Estimation , 1992 .

[13]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[15]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[16]  I. Dattner,et al.  Accelerated least squares estimation for systems of ordinary differential equations , 2015 .

[17]  Edward L. Ionides,et al.  Plug-and-play inference for disease dynamics: measles in large and small populations as a case study , 2009, Journal of The Royal Society Interface.

[18]  K. C. Jones,et al.  A Model for the Stoichiometric Regulation of Blood Coagulation* , 2002, The Journal of Biological Chemistry.

[19]  P. Bickel,et al.  Nonparametric estimators which can be "plugged-in" , 2003 .

[20]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[21]  M. Barenco,et al.  Fitting ordinary differential equations to short time course data , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  N. Brunel Parameter estimation of ODE’s via nonparametric estimators , 2007, 0710.4190.

[23]  P. Spreij,et al.  Parametric inference for stochastic differential equations: a smooth and match approach , 2011, 1111.1120.

[24]  David Campbell,et al.  Smooth functional tempering for nonlinear differential equation models , 2012, Stat. Comput..

[25]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[26]  Quentin Clairon,et al.  Parametric Estimation of Ordinary Differential Equations With Orthogonality Conditions , 2014, Journal of the American Statistical Association.

[27]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[28]  Chris A. J. Klaassen,et al.  √n-consistent parameter estimation for systems of ordinary differential equations : bypassing numerical integration via smoothing , 2010, 1007.3880.

[29]  Jiguo Cao,et al.  Parameter Estimation of Partial Differential Equation Models , 2013, Journal of the American Statistical Association.

[30]  C. R. Jones,et al.  Determination of Rate Constants for Complex Kinetics Models , 1967 .

[31]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[32]  Hulin Wu,et al.  A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data. , 2011, Statistica Sinica.

[33]  S. Vajda,et al.  Direct integral method via splne-approximation for estimating rate constants , 1982 .

[34]  Ernst Wit,et al.  Time-course window estimator for ordinary differential equations linear in the parameters , 2015, Stat. Comput..

[35]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[36]  L. Biegler,et al.  Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems , 1991 .

[37]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[38]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[39]  Hulin Wu,et al.  Modeling and Estimation of Kinetic Parameters and Replicative Fitness of HIV-1 from Flow-Cytometry-Based Growth Competition Experiments , 2008, Bulletin of mathematical biology.

[40]  Hulin Wu,et al.  Sieve Estimation of Constant and Time-Varying Coefficients in Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and Measurement Error. , 2010, Annals of statistics.

[41]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[42]  Hongyu Zhao,et al.  Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations , 2009, 0903.3400.

[43]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[44]  Frédérique Frouin,et al.  Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma , 2005, European Radiology.

[45]  Haihong Zhu,et al.  Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models , 2008, Bulletin of mathematical biology.

[46]  Simon Wain-Hobson Virus Dynamics: Mathematical Principles of Immunology and Virology , 2001, Nature Medicine.

[47]  Giles Hooker,et al.  Parameterizing state–space models for infectious disease dynamics by generalized profiling: measles in Ontario , 2011, Journal of The Royal Society Interface.

[48]  Hulin Wu,et al.  Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multimodel Inference , 2009, Biometrics.

[49]  Fuzhen Zhang The Schur Complement , 2012 .

[50]  Yanyuan Ma,et al.  Quick and easy one‐step parameter estimation in differential equations , 2014 .

[51]  Arild Thowsen,et al.  Structural identifiability , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[52]  I. Dattner A model‐based initial guess for estimating parameters in systems of ordinary differential equations , 2015, Biometrics.