Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA

The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux in the high energies domain where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.

[1]  Rodrigo Ibata,et al.  Draco, a flawless dwarf galaxy★ , 2006, astro-ph/0612263.

[2]  D. Gingrich,et al.  Search for Dark Matter Annihilation in Draco with STACEE , 2007, 0710.3545.

[3]  John F. Beacom,et al.  Conservative Constraints on dark matter annihilation into gamma rays , 2008, 0803.0157.

[4]  A. Green,et al.  The first WIMPy halos , 2005, astro-ph/0503387.

[5]  Jonathan L. Feng,et al.  Superweakly interacting massive particle solutions to small scale structure problems. , 2005, Physical review letters.

[6]  Cold dark matter and the LHC , 2004, hep-ph/0406147.

[7]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[8]  Structure of the Draco dwarf spheroidal galaxy , 2002, astro-ph/0201297.

[9]  G. Bertone,et al.  Dark matter candidates: a ten-point test , 2007, 0711.4996.

[10]  Determination of Dark Matter Properties at High-Energy Colliders , 2006, hep-ph/0602187.

[11]  M. Chertok,et al.  Search for Dark Matter Annihilations in Draco with CACTUS , 2006 .

[12]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .

[13]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[14]  E. Aliu MAGIC upper limits on the VHE gamma-ray emission from the satellite galaxy Willman 1 , 2008 .

[15]  L. A. Antonelli,et al.  UPPER LIMITS ON THE VHE GAMMA-RAY EMISSION FROM THE WILLMAN 1 SATELLITE GALAXY WITH THE MAGIC TELESCOPE , 2008, 0810.3561.

[16]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[17]  A. Burkert The Structure of Dark Matter Halos in Dwarf Galaxies , 1995 .

[18]  Andreas Koch,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007 .

[19]  M. Shetrone,et al.  TRIMMING DOWN THE WILLMAN 1 dSph , 2008, 0803.2489.

[20]  A. Chilingarian,et al.  Upper Limit for γ-Ray Emission above 140 GeV from the Dwarf Spheroidal Galaxy Draco , 2007, 0711.2574.

[21]  R. Carrera,et al.  The Star Formation History and Morphological Evolution of the Draco Dwarf Spheroidal Galaxy , 2001, astro-ph/0108159.

[22]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[23]  H. Krawczynski,et al.  A Search for Dark Matter Annihilation with the Whipple 10 m Telescope , 2008, 0801.1708.

[24]  M. Kaplinghat Dark matter from early decays , 2005, astro-ph/0507300.

[25]  F. Paige,et al.  ISAJET 7.40: A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions , 1998 .

[26]  A. Kong,et al.  Dwarf Galaxies of the Local Group , 2005, Proceedings of the International Astronomical Union.

[27]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[28]  Savvas M. Koushiappas,et al.  Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments , 2007 .

[29]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[30]  Michael Gustafsson,et al.  Gamma rays from heavy neutralino dark matter. , 2005, Physical review letters.

[31]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[32]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[35]  B. Willman,et al.  THE LEAST-LUMINOUS GALAXY: SPECTROSCOPY OF THE MILKY WAY SATELLITE SEGUE 1 , 2008, 0809.2781.

[36]  P. Ullio,et al.  Clumpy Neutralino Dark Matter , 1998, astro-ph/9806072.

[37]  Beth Willman,et al.  The Most Dark-Matter-dominated Galaxies: Predicted Gamma-Ray Signals from the Faintest Milky Way Dwarfs , 2007, 0709.1510.

[38]  Particle dark matter constraints from the Draco dwarf galaxy , 2002, astro-ph/0203242.

[39]  R. W. Ogburn,et al.  A Search for WIMPs with the First Five-Tower Data from CDMS , 2008 .

[40]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[41]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[42]  Lars Bergström,et al.  Radiative Processes in Dark Matter Photino Annihilation , 1989 .

[43]  Sidney van den Bergh,et al.  The Galaxies of the Local Group , 1968 .

[44]  To Appear in ApJ letters Preprint typeset using L ATEX style emulateapj v. 04/03/99 DARK MATTER SCALING RELATIONS , 2000 .

[45]  T. Jeltema,et al.  Searching for Dark Matter with X-Ray Observations of Local Dwarf Galaxies , 2008, 0805.1054.

[46]  D. Hooper,et al.  Dark matter and gamma-rays from Draco: MAGIC, GLAST and CACTUS , 2005, hep-ph/0512317.

[47]  R. Arnowitt,et al.  Locally Supersymmetric Grand Unification , 1982 .

[48]  T. Bringmann,et al.  Thermal decoupling of WIMPs from first principles , 2006, hep-ph/0612238.

[49]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[50]  Dark matter from late decays and the small-scale structure problems , 2006, hep-ph/0701007.

[51]  T. Weekes,et al.  The Whipple Observatory 10 m gamma-ray telescope, 1997-2006 , 2007 .

[52]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[53]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[54]  THE ASTROPHYSICAL JOURNAL, IN PRESS Preprint typeset using LATEX style emulateapj v. 6/22/04 CONSTRAINING GLOBAL PROPERTIES OF THE DRACO DWARF SPHEROIDAL GALAXY , 2005 .

[55]  Lars Bergstrom,et al.  New gamma-ray contributions to supersymmetric dark matter annihilation , 2007, 0710.3169.

[56]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[57]  Infn,et al.  Neutralino annihilation into gamma-rays in the Milky Way and in external galaxies , 2004, hep-ph/0407342.

[58]  Astrophysics,et al.  The Third Stromlo Symposium - The Galactic Halo: Bright Stars and Dark Matter , 1999 .

[59]  L. Bergstrom,et al.  Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo , 1998 .

[60]  Earth-mass dark-matter haloes as the first structures in the early Universe , 2005, Nature.

[61]  M. Aaronson,et al.  Accurate radial velocities for carbon stars in Draco and Ursa Minor - The first hint of a dwarf spheroidal mass-to-light ratio , 1983 .

[62]  Mario Mateo,et al.  Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies , 2007, 0708.0010.

[63]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[64]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[65]  S. Colafrancesco,et al.  Detecting dark matter WIMPs in the Draco dwarf: A multiwavelength perspective , 2007 .

[66]  Neil Gehrels,et al.  GLAST: The Next-Generation High-Energy Gamma-Ray Astronomy Mission , 1999 .

[67]  C. Winant,et al.  First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. , 2007, Physical review letters.

[68]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[69]  F. Gianotti,et al.  Updated post-WMAP benchmarks for supersymmetry , 2003, hep-ph/0306219.

[70]  Gary A. Mamon,et al.  Dark matter distribution in the Draco dwarf from velocity moments , 2004, astro-ph/0411694.

[71]  L. Bergstrom,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004 .

[72]  W. Hofmann Performance Limits for Cherenkov Instruments , 2005, astro-ph/0603076.

[73]  K. Bernlöhr,et al.  MC Simulation and Layout Studies for a future Cherenkov Telescope Array , 2008 .

[74]  Munchen,et al.  Monte Carlo Simulation for the MAGIC-II System , 2007, 0709.2959.

[75]  Dark Matter annihilation in Draco: new considerations of the expected gamma flux , 2007, astro-ph/0701426.

[76]  A. Wilson Sculptor-Type Systems in the Local Group of Galaxies , 1955 .

[77]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.