Utilizing encoding in scalable linear optics quantum computing

We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.

[1]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[2]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[3]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[4]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[5]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[6]  E. Knill,et al.  Quantum gates using linear optics and postselection , 2002 .

[7]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[8]  J. L. O'Brien,et al.  High-fidelity Z-measurement error encoding of optical qubits , 2004, quant-ph/0408064.

[9]  Jian-Wei Pan,et al.  Realization of a photonic controlled-NOT gate sufficient for quantum computation. , 2004, Physical Review Letters.

[10]  Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency and an improvement to functionality under these conditions , 2003, quant-ph/0308071.

[11]  Gerard J. Milburn,et al.  Simple scheme for efficient linear optics quantum gates , 2001 .

[12]  N. Yoran,et al.  Deterministic linear optics quantum computation with single photon qubits. , 2003, Physical review letters.

[13]  Dan E. Browne,et al.  Efficient linear optical quantum computation , 2004 .

[14]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[15]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[16]  J D Franson,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[17]  E. Knill,et al.  Thresholds for Linear Optics Quantum Computation , 2000, quant-ph/0006120.

[18]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.