Physics informed deep learning to super-resolve and cross-calibrate solar magnetograms
暂无分享,去创建一个
Y. Gal | Michel Deudon | A. G. Baydin | Freddie Kalaitzis | S. Maloney | Xavier Gitiaux | A. Muñoz-Jaramillo | P. Wright | A. Jungbluth | C. Shneider
[1] Steven C. H. Hoi,et al. Deep Learning for Image Super-Resolution: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] Y. Moon,et al. Super-resolution of SDO/HMI Magnetograms Using Novel Deep Learning Methods , 2020, The Astrophysical Journal.
[3] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[4] Yoshua Bengio,et al. HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery , 2020, ArXiv.
[5] Kevin Reardon,et al. The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package , 2020, The Astrophysical Journal.
[6] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[7] Kamal Jain,et al. A Technical Review on Image Super-Resolution Techniques , 2020 .
[8] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[9] Wei Wang,et al. Deep Learning for Single Image Super-Resolution: A Brief Review , 2018, IEEE Transactions on Multimedia.
[10] K. Mursula,et al. Photospheric and coronal magnetic fields in six magnetographs III. Photospheric and coronal magnetic fields in 1974–2017 , 2019 .
[11] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[12] A. Asensio Ramos,et al. Enhancing SDO/HMI images using deep learning , 2017, ArXiv.
[13] Mohammad Norouzi,et al. Pixel Recursive Super Resolution , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[14] Xiaogang Wang,et al. Learnable Histogram: Statistical Context Features for Deep Neural Networks , 2016, ECCV.
[15] T. Duvall,et al. Observables Processing for the Helioseismic and Magnetic Imager Instrument on the Solar Dynamics Observatory , 2016, 1606.02368.
[16] Thuy Mai,et al. Solar Dynamics Observatory (SDO) , 2015 .
[17] Emmanuelle Gouillart,et al. scikit-image: image processing in Python , 2014, PeerJ.
[18] Jesper Schou,et al. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance , 2014, 1404.1881.
[19] M. Ben‐Nun,et al. A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms , 2014 .
[20] Luca Bertello,et al. The Solar Cycle , 2012 .
[21] Yang Liu,et al. Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager , 2012 .
[22] C. J. Wolfson,et al. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .
[23] J. T. Hoeksema,et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .
[24] J. Borrero,et al. Magnetic Structure of Sunspots , 2011, Living reviews in solar physics.
[25] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[26] David R. Chesney,et al. Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.
[27] Jean Ponce,et al. Computer Vision: A Modern Approach , 2002 .
[28] J. Linker,et al. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month , 1999 .
[29] V. Domingo,et al. The SOHO mission: An overview , 1995 .
[30] Alan M. Title,et al. The solar oscillations investigation - Michelson Doppler Imager. , 1992 .
[31] Irwin Sobel,et al. An Isotropic 3×3 image gradient operator , 1990 .
[32] William Charles Livingston,et al. The Global Oscillation Network Group (GONG) , 1988 .