Optimization of switched reluctance motors using deterministic methods with static and dynamic finite element simulations

This paper presents the shape optimization of a switched reluctance motor (SRM) using a finite element model and several deterministic methods. Firstly, the experimental design method is used to determine the SRM shape that produces the higher static torque, then a shape sensitivity analysis is carried out beyond the feasible triangle limits. Secondly, deterministic methods are compared on SRM dynamic optimization with regard to motor performances and the number of finite element simulations needed. The optimized motor shape and transistor drive allow a high torque without a large current peak.