A Comparative Study on the Use of Multi-label Classification Techniques for Concept-Based Video Indexing and Annotation

Exploiting concept correlations is a promising way for boosting the performance of concept detection systems, aiming at concept-based video indexing or annotation. Stacking approaches, which can model the correlation information, appear to be the most commonly used techniques to this end. This paper performs a comparative study and proposes an improved way of employing stacked models, by using multi-label classification methods in the last level of the stack. The experimental results on the TRECVID 2011 and 2012 semantic indexing task datasets show the effectiveness of the proposed framework compared to existing works. In addition to this, as part of our comparative study, we investigate whether the evaluation of concept detection results at the level of individual concepts, as is typically the case in the literature, is appropriate for assessing the usefulness of concept detection results in both video indexing applications and in the somewhat different problem of video annotation.

[1]  John R. Smith,et al.  Multimedia semantic indexing using model vectors , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[2]  Thomas S. Huang,et al.  Image processing , 1971 .

[3]  Mei-Ling Shyu,et al.  Florida International University and University of Miami TRECVID 2011 , 2011, TRECVID.

[4]  Tao Mei,et al.  Joint multi-label multi-instance learning for image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Deli Zhao,et al.  Classification via semi-Riemannian spaces , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Chong-Wah Ngo,et al.  Semantic Indexing and Multimedia Event Detection: ECNU at TRECVID 2012 , 2012, TRECVID.

[7]  Stéphane Ayache,et al.  Video Corpus Annotation Using Active Learning , 2008, ECIR.

[8]  Georges Quénot,et al.  TRECVID 2015 - An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics , 2011, TRECVID.

[9]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[10]  Ian Witten,et al.  Data Mining , 2000 .

[11]  Jesse Read,et al.  A Pruned Problem Transformation Method for Multi-label Classification , 2008 .

[12]  Tat-Seng Chua,et al.  Automatic image annotation via local multi-label classification , 2008, CIVR '08.

[13]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[14]  Shih-Fu Chang,et al.  Active Context-Based Concept Fusionwith Partial User Labels , 2006, 2006 International Conference on Image Processing.

[15]  Grigorios Tsoumakas,et al.  On the Stratification of Multi-label Data , 2011, ECML/PKDD.

[16]  Abbas Z. Kouzani,et al.  Empirical Study of Multi-label Classification Methods for Image Annotation and Retrieval , 2010, 2010 International Conference on Digital Image Computing: Techniques and Applications.

[17]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[18]  Rong Jin,et al.  Correlated Label Propagation with Application to Multi-label Learning , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[20]  Tao Mei,et al.  Correlative multi-label video annotation , 2007, ACM Multimedia.

[21]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[22]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[23]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[24]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[25]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[26]  Yung-Yu Chuang,et al.  Cross-Domain Multicue Fusion for Concept-Based Video Indexing , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  P. Greenwood,et al.  A Guide to Chi-Squared Testing , 1996 .

[28]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[29]  Tao Mei,et al.  Graph-based semi-supervised learning with multiple labels , 2009, J. Vis. Commun. Image Represent..

[30]  Grigorios Tsoumakas,et al.  Correlation-Based Pruning of Stacked Binary Relevance Models for Multi-Label Learning , 2009 .

[31]  Yiannis Kompatsiaris,et al.  ITI-CERTH participation to TRECVID 2015 , 2015, TRECVID.

[32]  Pavel Zemcík,et al.  Annotating Images with Suggestions - User Study of a Tagging System , 2012, ACIVS.

[33]  Marcel Worring,et al.  Concept-Based Video Retrieval , 2009, Found. Trends Inf. Retr..