Nodal domain distributions for quantum maps
暂无分享,去创建一个
Francesco Mezzadri | Jon P Keating | J. Keating | Alejandro G. Monastra | F. Mezzadri | A. G. Monastra
[1] O. Bohigas,et al. Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .
[2] Michael V Berry,et al. Regular and irregular semiclassical wavefunctions , 1977 .
[3] Uzy Smilansky,et al. Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.
[4] M. Berry,et al. Quantization of linear maps on a torus-fresnel diffraction by a periodic grating , 1980 .
[5] R. Courant,et al. Ein allgemeiner Satzt zur Theorie der Eigenfunktionen selbsadjungierter Differentialausdrücke , 1923 .
[6] M. Berry,et al. Nodal densities of Gaussian random waves satisfying mixed boundary conditions , 2002 .
[7] Michael V Berry,et al. Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature , 2002 .
[8] J. Keating. The cat maps: quantum mechanics and classical motion , 1991 .
[9] F. Mezzadri,et al. Pseudo-symmetries of Anosov maps and spectral statistics , 2000 .
[10] M. Dematos,et al. Quantization of Anosov Maps , 1995 .
[11] U. Smilansky,et al. Avoided intersections of nodal lines , 2002, nlin/0212006.
[12] Hecke theory and equidistribution for the quantization of linear maps of the torus , 1999, chao-dyn/9901031.
[13] J. Keating. Asymptotic properties of the periodic orbits of the cat maps , 1991 .
[14] E. Bogomolny,et al. Percolation model for nodal domains of chaotic wave functions. , 2001, Physical review letters.