Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties

Using a first-principles band structure method we have theoretically studied the effects of Ga additions on the electronic and structural properties of CuInSe2. We find that (i) with increasing xGa, the valence band maximum of CuIn1−xGaxSe2 (CIGS) decreases slightly, while the conduction band minimum (and the band gap) of CIGS increases significantly, (ii) the acceptor formation energies are similar in both CuInSe2 (CIS) and CuGaSe2 (CGS), but the donor formation energy is larger in CGS than in CIS, (iii) the acceptor transition levels are shallower in CGS than in CIS, but the GaCu donor level in CGS is much deeper than the InCu donor level in CIS, and (iv) the stability domain of the chalcopyrite phase increases with respect to ordered defect compounds. Our results are compared with available experimental observations.