Simulation analysis of Cd-free Cu(In,Ga)Se2 solar cells with novel BiOX (X=Cl, Br) buffer layers

[1]  Yun Sun,et al.  Ammonia-induced surface microstructure reconstruction on ACIGS thin film at room temperature , 2022, Materials Science in Semiconductor Processing.

[2]  Qinfang Zhang,et al.  Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution , 2022, Journal of Materials Science & Technology.

[3]  Yong‐Duck Chung,et al.  Evolution of Morphological and Chemical Properties at p-n Junction of Cu(In,Ga)Se2 Solar Cells with Zn(O,S) Buffer Layer as a Function of KF Postdeposition Treatment Time. , 2021, ACS applied materials & interfaces.

[4]  Yun Sun,et al.  Silver-assisted optimization of band gap gradient structure of Cu(In,Ga)Se2 solar cells via SCAPS , 2021, Solar Energy.

[5]  B. Mercimek,et al.  Determination of photovoltaic parameters of CIGS hetero junction solar cells produced by PLD technique, using SCAPS simulation program , 2021 .

[6]  Qinfang Zhang,et al.  Stoichiometry-dependent photocatalytic performance of bismuth-based oxychlorides Bi OyCl , 2021 .

[7]  L. Stolt,et al.  Performance Limitations of Wide‐Gap (Ag,Cu)(In,Ga)Se 2 Thin‐Film Solar Cells , 2021, Solar RRL.

[8]  G. Rignanese,et al.  Over 15% efficient wide-band-gap Cu(In,Ga)S2 solar cell: Suppressing bulk and interface recombination through composition engineering , 2021, Joule.

[9]  L. Bi,et al.  Tailoring a LaMnO3 cathode for proton-conducting solid oxide fuel cells: integration of high performance and excellent stability , 2021, Journal of Materials Chemistry A.

[10]  L. Hultman,et al.  The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy , 2021, Scientific Reports.

[11]  W. Wang,et al.  Effect of evaporated CdS layer on formation and performance enhancement of flexible Cu2ZnSn(S,Se)4 solar cells , 2021 .

[12]  Wei Liu,et al.  Enhancing Surface Properties for Electrodeposited Cu(In,Ga)Se2 Films by (NH4)2S Solution at Room Temperature , 2021 .

[13]  T. Minemoto,et al.  Device design for high-performance bifacial Cu(In,Ga)Se2 solar cells under front and rear illuminations , 2021 .

[14]  J. Yun,et al.  Reactively sputtered Zn(O,S) buffer layers for controlling band alignment of Cu(In,Ga)Se2 thin-film solar cell interface , 2020 .

[15]  B. Yao,et al.  Sodium doping of solution-processed Cu2ZnSn(S,Se)4 thin film and its effect on Cu2ZnSn(S,Se)4 based solar cells , 2020 .

[16]  Yun Sun,et al.  Boosting Cu(In,Ga)Se2 Thin Film Growth in Low-Temperature Rapid-Deposition Processes: An Improved Design for the Single-Heating Knudsen Effusion Cell , 2020 .

[17]  Yun Sun,et al.  Facile Silver-Incorporated Method of Tuning the Back Gradient of Cu(In,Ga)Se2 Films , 2020 .

[18]  Yun Sun,et al.  Silver Surface Treatment of Cu(In,Ga)Se 2 (CIGS) Thin Film: A New Passivation Process for the CdS/CIGS Heterojunction Interface , 2020 .

[19]  T. Minemoto,et al.  Manipulation of [Ga]/([Ga] + [In]) profile in 1.4-μm-thick Cu(In,Ga)Se2 thin film on flexible stainless steel substrate for enhancing short-circuit current density and conversion efficiency of its solar cell , 2020 .

[20]  S. Zuo,et al.  The effect of substrate temperature and Sn/Se mass ratio on the co-evaporated SnSe thin film for photovoltaic application , 2020 .

[21]  C. Stampfl,et al.  First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. , 2020, Physical chemistry chemical physics : PCCP.

[22]  Honglie Shen,et al.  Cd-free Cu(InGa)Se2 solar cells with eco-friendly a-Si buffer layers , 2020 .

[23]  C. Lai,et al.  Efficiency Enhancement of Cu(In,Ga)(S,Se)2 Solar Cells by Indium-doped CdS Buffer Layer. , 2020, ACS applied materials & interfaces.

[24]  Q. Gong,et al.  Influences of Cu concentration on electrical properties of CZTSSe absorbers and their device performances , 2020 .

[25]  L. Hultman,et al.  Compromising science by ignorant instrument calibration - need to revisit half a century of published XPS data. , 2020, Angewandte Chemie.

[26]  W. Jo,et al.  Mechanisms of extrinsic alkali incorporation in CIGS solar cells on flexible polyimide elucidated by nanoscale and quantitative analyses , 2020 .

[27]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[28]  Rui Shan,et al.  Optimization bandgap gradation structure simulation of Cu2Sn1−xGexS3 solar cells by SCAPS , 2019 .

[29]  Motoshi Nakamura,et al.  Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35% , 2019, IEEE Journal of Photovoltaics.

[30]  Yun Sun,et al.  Optimizing the thickness of sputtering-Zn(O, S) buffer layer for all-dry Cd-free CIGS solar cells , 2019, Materials Research Express.

[31]  Xiaomin Wang,et al.  Effects of Ammonia-Induced Surface Modification of Cu(In,Ga)Se2 on High-Efficiency Zn(O,S)-Based Cu(In,Ga)Se2 Solar Cells , 2019, Solar RRL.

[32]  Yun Sun,et al.  Numerical analysis on effects of experimental Ga grading on Cu(In,Ga)Se 2 solar cell performance , 2018, Journal of Physics and Chemistry of Solids.

[33]  A. Pérez‐Rodríguez,et al.  Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up , 2018, Nature Energy.

[34]  Guangming Zeng,et al.  BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. , 2018, Advances in colloid and interface science.

[35]  Rachel C. Kurchin,et al.  Strongly Enhanced Photovoltaic Performance and Defect Physics of Air‐Stable Bismuth Oxyiodide (BiOI) , 2017, Advanced materials.

[36]  L. Hultman,et al.  C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material's Bonding Assignment by Photoelectron Spectroscopy , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  T. Minemoto,et al.  Influence of minimum position in [Ga]/([Ga]+[In]) profile of Cu(In,Ga)Se2 on flexible stainless steel substrate on its photovoltaic performances , 2016 .

[38]  H. Lee,et al.  Ag incorporation in low-temperature grown Cu(In,Ga)Se2 solar cells using Ag precursor layers , 2016 .

[39]  B. Ahn,et al.  Understanding the light soaking effect of ZnMgO buffer in CIGS solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[40]  G. H. Bauer,et al.  Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells , 2015 .

[41]  Sun Cheul Kim,et al.  Performance improvement in Cd-free Cu(In,Ga)Se2 solar cells by modifying the electronic structure of the ZnMgO buffer layer , 2014 .

[42]  J. Sites,et al.  Impact of the Band Offset for n-Zn(O,S)/p-Cu(In,Ga)Se$_{2}$ Solar Cells , 2014, IEEE Journal of Photovoltaics.

[43]  M. Lux‐Steiner,et al.  Comparative study of Cu(In,Ga)Se2/CdS and Cu(In,Ga)Se2/In2S3 systems by surface photovoltage techniques , 2013 .

[44]  Xiaochao Zhang,et al.  First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals , 2012 .

[45]  E. Aydil,et al.  Improving the damp-heat stability of copper indium gallium diselenide solar cells with a semicrystalline tin dioxide overlayer , 2012 .

[46]  G. Renou,et al.  Investigation of the metastability behavior of CIGS based solar cells with ZnMgO-Zn(S,O,OH) window-buffer layers , 2011 .

[47]  H. Schock,et al.  Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells , 2010 .

[48]  Olivier Roussel,et al.  The Zn(S,O,OH)/ZnMgO buffer in thin film Cu(In,Ga)(S,Se)2‐based solar cells part I: Fast chemical bath deposition of Zn(S,O,OH) buffer layers for industrial application on Co‐evaporated Cu(In,Ga)Se2 and electrodeposited CuIn(S,Se)2 solar cells , 2009 .

[49]  N. Barreau,et al.  Structural study and electronic band structure investigations of the solid solution NaxCu1 − xIn5S8 and its impact on the Cu(In,Ga)Se2/In2S3 interface of solar cells , 2007 .

[50]  C. Zheng,et al.  Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst , 2006 .

[51]  Su-Huai Wei,et al.  Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties , 1998 .