Half-metre sea-level fluctuations on centennial timescales from mid-Holocene corals of Southeast Asia

Sea-level rise is a global problem, yet to forecast future changes, we must understand how and why relative sea level (RSL) varied in the past, on local to global scales. In East and Southeast Asia, details of Holocene RSL are poorly understood. Here we present two independent high-resolution RSL proxy records from Belitung Island on the Sunda Shelf. These records capture spatial variations in glacial isostatic adjustment and paleotidal range, yet both reveal a RSL history between 6850 and 6500 cal years BP that includes two 0.6 m fluctuations, with rates of RSL change reaching 13±4 mm per year (2σ). Observations along the south coast of China, although of a lower resolution, reveal fluctuations similar in amplitude and timing to those on the Sunda Shelf. The consistency of the Southeast Asian records, from sites 2,600 km apart, suggests that the records reflect regional changes in RSL that are unprecedented in modern times.

[1]  Q. Hua,et al.  Holocene marine 14C reservoir age variability: Evidence from 230Th‐dated corals in the South China Sea , 2010 .

[2]  J. Southon,et al.  Marine Reservoir Corrections for the Indian Ocean and Southeast Asia , 2002, Radiocarbon.

[3]  Boudewijn Ambrosius,et al.  A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries , 2007 .

[4]  T. Yanagi,et al.  Numerical modeling of tidal dynamics in the Java Sea , 2012 .

[5]  S. Rahmstorf,et al.  Temperature-driven global sea-level variability in the Common Era , 2016, Proceedings of the National Academy of Sciences.

[6]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[7]  Andrew C. Kemp Climate related sea-level variations over the past two millennia , 2012 .

[8]  W. Peltier Geoide Height Time Dependence and Global Glacial Isostasy: The ICE-5G(VM2) Model and GRACE , 2004 .

[9]  K. Sieh,et al.  Time-varying interseismic strain rates and similar seismic ruptures on the Nias–Simeulue patch of the Sunda megathrust , 2015 .

[10]  C. Ramsey Deposition models for chronological records , 2008 .

[11]  Xuebin Zhang,et al.  Sea level trends, interannual and decadal variability in the Pacific Ocean , 2012 .

[12]  Joannes J. Westerink,et al.  A solution for the vertical variation of stress, rather than velocity, in a three-dimensional circulation model , 1991 .

[13]  J. Mitrovica,et al.  On the origin of late Holocene sea-level highstands within equatorial ocean basins , 2002 .

[14]  J Schwander,et al.  High-resolution record of Northern Hemisphere climate extending into the last interglacial period , 2004, Nature.

[15]  Gary D. Egbert,et al.  A brief overview of tides in the Indonesian Seas , 2005 .

[16]  P. Kench,et al.  Destruction or persistence of coral atoll islands in the face of 20th and 21st century sea‐level rise? , 2015 .

[17]  K. Sieh,et al.  Modern Vertical Deformation above the Sumatran Subduction Zone: Paleogeodetic Insights from Coral Microatolls , 2000 .

[18]  A. Timmermann,et al.  Future extreme sea level seesaws in the tropical Pacific , 2015, Science Advances.

[19]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[20]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[21]  K. Sieh,et al.  Deformation and Slip Along the Sunda Megathrust in the Great 2005 Nias-Simeulue Earthquake , 2006, Science.

[22]  I. Overeem,et al.  Sinking deltas due to human activities , 2009 .

[23]  Kalonie Hulbutta,et al.  GIS analysis of global impacts from sea level rise. , 2009 .

[24]  K. Sieh,et al.  Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh–Andaman rupture , 2010 .

[25]  Jody M. Webster,et al.  Mid‐late Holocene sea‐level variability in eastern Australia , 2008 .

[26]  M. Ikeda,et al.  Three-dimensional modeling of tidal circulation and mixing over the Java Sea , 2008 .

[27]  C. Frohlich,et al.  Analysis of partially emerged corals and reef terraces in the central Vanuatu Arc: Comparison of contemporary coseismic and nonseismic with quaternary vertical movements , 1987 .

[28]  C. Woodroffe,et al.  Microatolls as sea-level indicators on a mid-ocean atoll , 2000 .

[29]  F. Pollitz,et al.  Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth , 2006 .

[30]  S. Smithers,et al.  Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U–Th dating of fossil microatolls , 2015, Coral reefs.

[31]  D. Hill,et al.  29. Tidal modeling , 2015 .

[32]  J. Hunter,et al.  Sea-level rise at tropical Pacific and Indian Ocean islands , 2006 .

[33]  Stefano Vignudelli,et al.  Sea level trends in Southeast Asian seas , 2015 .

[34]  C. Buck,et al.  IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP , 2013, Radiocarbon.

[35]  P. Watson,et al.  Australian sea levels—Trends, regional variability and influencing factors , 2014 .

[36]  K. Sieh,et al.  Persistent termini of 2004‐ and 2005‐like ruptures of the Sunda megathrust , 2012 .

[37]  F. Pollitz,et al.  Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M= 9.2 Sumatra earthquake , 2008 .

[38]  P. Clark,et al.  Closing the sea level budget at the Last Glacial Maximum , 2014, Proceedings of the National Academy of Sciences.

[39]  V. Titov,et al.  The Harmonic Constant Datum Method: Options for Overcoming Datum Discontinuities at Mixed–Diurnal Tidal Transitions* , 2004 .

[40]  M. Eliot,et al.  Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels , 2011 .

[41]  B. Rosen,et al.  The Nature and Significance of Microatolls , 1978 .

[42]  Frank Scherbaum,et al.  Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment , 2010 .

[43]  C. Woodroffe,et al.  8. Coral microatolls , 2015 .

[44]  M. England,et al.  Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning , 2014, Nature Communications.

[45]  G. Milne,et al.  The influence of viscosity structure in the lithosphere on predictions from models of glacial isostatic adjustment , 2015 .

[46]  P. Tkalich,et al.  Sea level trend and variability around Peninsular Malaysia , 2014 .

[47]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[48]  D. Fabre,et al.  Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS , 2009 .

[49]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[50]  W. Peltier,et al.  High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene , 2011 .

[51]  W. Peltier,et al.  On postglacial geoid subsidence over the equatorial oceans , 1991 .

[52]  P. Gibbard,et al.  Holocene sea levels and palaeoenvironments, Malay-Thai Peninsula, southeast Asia , 2005 .

[53]  R. Lawrence Edwards,et al.  El Niño/Southern Oscillation and tropical Pacific climate during the last millennium , 2003, Nature.

[54]  P. Whitehouse,et al.  Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica , 2015 .

[55]  T. Done,et al.  Microatoll record for large century-scale sea-level fluctuations in the mid-Holocene , 2009, Quaternary Research.

[56]  Fred F. Pollitz,et al.  Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake , 2010 .

[57]  Y. Zong,et al.  Modelling sea level data from China and Malay-Thailand to estimate Holocene ice-volume equivalent sea level change , 2016 .

[58]  S. Woodroffe,et al.  Reference water level and tidal datum , 2015 .

[59]  David Hopley,et al.  The geomorphology of the Great Barrier Reef: Quaternary development of coral reefs , 1982 .

[60]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[61]  D. Hill Spatial and Temporal Variability in Tidal Range: Evidence, Causes, and Effects , 2016, Current Climate Change Reports.

[62]  J. Mitrovica,et al.  Radial resolving power of far-field differential sea-level highstands in the inference of mantle viscosity , 2007 .

[63]  K. Sieh,et al.  Rupture and variable coupling behavior of the Mentawai segment of the Sunda megathrust during the supercycle culmination of 1797 to 1833 , 2014 .

[64]  B. Horton,et al.  Accommodation space, relative sea level, and the archiving of paleo-earthquakes along subduction zones , 2015 .