GPLSI: Supervised Sentiment Analysis in Twitter using Skipgrams

In this paper we describe the system submitted for the SemEval 2014 Task 9 (Sentiment Analysis in Twitter) Subtask B. Our contribution consists of a supervised approach using machine learning techniques, which uses the terms in the dataset as features. In this work we do not employ any external knowledge and resources. The novelty of our approach lies in the use of words, ngrams and skipgrams (notadjacent ngrams) as features, and how they are weighted.

[1]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[2]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[3]  Ester Boldrini,et al.  Machine learning techniques for automatic opinion detection in non-traditional textual genres , 2009 .

[4]  Sabine Bergler,et al.  When Specialists and Generalists Work Together: Overcoming Domain Dependence in Sentiment Tagging , 2008, ACL.

[5]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[6]  Bruno Pouliquen,et al.  Opinion Mining on Newspaper Quotations , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[7]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[8]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[9]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[10]  Franciska de Jong,et al.  Scope of negation detection in sentiment analysis , 2011 .

[11]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[12]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[13]  Min Zhang,et al.  A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval , 2008, SIGIR '08.

[14]  Julio Gonzalo,et al.  Overview of RepLab 2012: Evaluating Online Reputation Management Systems , 2012, CLEF.

[15]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[16]  José Carlos González,et al.  TASS - Workshop on Sentiment Analysis at SEPLN , 2013, Proces. del Leng. Natural.

[17]  Patricio Martínez-Barco,et al.  Evaluating EmotiBlog Robustness for Sentiment Analysis Tasks , 2011, NLDB.

[18]  Patricio Martínez-Barco,et al.  Sentiment Analysis of Spanish Tweets Using a Ranking Algorithm and Skipgrams , 2013 .

[19]  Hongbo Xu,et al.  Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis , 2009, ECIR.

[20]  Claire Cardie,et al.  OpinionFinder: A System for Subjectivity Analysis , 2005, HLT.

[21]  Grzegorz Kondrak,et al.  A Comparison of Sentiment Analysis Techniques: Polarizing Movie Blogs , 2008, Canadian Conference on AI.

[22]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[23]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[24]  Rudy Prabowo,et al.  Sentiment analysis: A combined approach , 2009, J. Informetrics.

[25]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[26]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[27]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[28]  Nigel Collier,et al.  Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.

[29]  TaboadaMaite,et al.  Lexicon-based methods for sentiment analysis , 2011 .

[30]  Saif Mohammad,et al.  NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets , 2013, *SEMEVAL.

[31]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .