A primal–dual active set strategy for non-linear multibody contact problems

Abstract Non-conforming domain decomposition methods provide a powerful tool for the numerical approximation of partial differential equations. For the discretization of a non-linear multibody contact problem, we use the mortar approach with a dual Lagrange multiplier space. To handle the non-linearity of the contact conditions, we apply a primal–dual active set strategy to find the actual contact zone. The algorithm can be easily generalized to multibody contact problems. A suitable basis transformation guarantees the same algebraic structure in the multibody situation as in the one body case. Using an inexact primal–dual active set strategy in combination with a multigrid method yields an efficient iterative solver. Different numerical examples for one and multibody contact problems illustrate the performance of the method.

[1]  Peter Wriggers,et al.  Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..

[2]  Guy Bayada,et al.  Algorithme de Neumann–Dirichlet pour des problèmes de contact unilatéral : Résultat de convergence , 2002 .

[3]  Z. Dostál,et al.  Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .

[4]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[5]  Barbara Wohlmuth,et al.  CONVERGENCE OF A CONTACT-NEUMANN ITERATION FOR THE SOLUTION OF TWO-BODY CONTACT PROBLEMS , 2003 .

[6]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[7]  Zdeněk Dostál,et al.  Solution of Coercive and Semicoercive Contact Problems by FETI Domain Decomposition , 1998 .

[8]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[9]  Kazufumi Ito,et al.  Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .

[10]  Hertz On the Contact of Elastic Solids , 1882 .

[11]  Barbara Wohlmuth,et al.  A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems , 2005 .

[12]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[13]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[14]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[15]  Barbara I. Wohlmuth A V-cycle Multigrid Approach for Mortar Finite Elements , 2005, SIAM J. Numer. Anal..

[16]  D. Kinderlehrer,et al.  Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .

[17]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[18]  K. Kunisch,et al.  Semismooth Newton methods for a class of unilaterally constrained variational problems , 2004 .

[19]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[20]  R. Krause,et al.  A Dirichlet–Neumann type algorithm for contact problems with friction , 2002 .

[21]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[22]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[23]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[24]  Rolf Krause,et al.  Monotone Multigrid Methods for Signorini's Problem with Friction , 2001 .

[25]  David Horák,et al.  Scalability and FETI based algorithm for large discretized variational inequalities , 2003, Math. Comput. Simul..

[26]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[27]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..