Intelligent Wavelet Based Techniques for Advanced Multimedia Applications

With the great development of multimedia technology and applications, it becomes important to provide a thorough understanding of the existing literature. This aim can be achieved by analysis of state of the art methodologies of multimedia applications. Wavelet transforms have been found very useful in a large variety of multimedia applications. It ranges from simple imaging to complex computer vision applications. One of the major advantages of the wavelet transform is that it meets the need of majority of applications and can be combined with machine and deep learning for performance enhancement. These applications include image fusion, image and video watermarking, object tracking, activity recognition, emotion recognition etc. This chapter aims to provide a brief introduction to the development of multimedia applications in the wavelet domain. Some major multimedia applications of the wavelet transforms have been discussed with their relevance and real life applications.

[1]  Tarek Sayed,et al.  Automated Analysis of Pedestrian Group Behavior in Urban Settings , 2018, IEEE Transactions on Intelligent Transportation Systems.

[2]  Zhiyong Feng,et al.  Facial expression recognition via deep learning , 2014, 2014 International Conference on Smart Computing.

[3]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[4]  KokSheik Wong,et al.  Less is More: Micro-expression Recognition from Video using Apex Frame , 2016, Signal Process. Image Commun..

[5]  Shirin Tavara,et al.  Parallel Computing of Support Vector Machines , 2019, ACM Comput. Surv..

[6]  Tieniu Tan,et al.  Wavelet Domain Generative Adversarial Network for Multi-scale Face Hallucination , 2019, International Journal of Computer Vision.

[7]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Moyukh Chatterjee Bandh politics: crowds, spectacular violence, and sovereignty in India , 2016 .

[9]  P. Ekman Facial expression and emotion. , 1993, The American psychologist.

[10]  Shiguo Lian,et al.  Hybrid multiplicative multi-watermarking in DWT domain , 2017, Multidimens. Syst. Signal Process..

[11]  Yiwei Wang,et al.  Moving object tracking in video , 2000, Proceedings 29th Applied Imagery Pattern Recognition Workshop.

[12]  A. K. Pal,et al.  A robust blind hybrid image watermarking scheme in RDWT-DCT domain using Arnold scrambling , 2017, Multimedia Tools and Applications.

[13]  George Lee,et al.  Computer-aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data , 2011, Comput. Medical Imaging Graph..

[14]  Jean-Pierre Antoine,et al.  Image analysis with two-dimensional continuous wavelet transform , 1993, Signal Process..

[15]  Alexei A. Efros,et al.  Ensemble of exemplar-SVMs for object detection and beyond , 2011, 2011 International Conference on Computer Vision.

[16]  Gonzalo Pajares,et al.  A wavelet-based image fusion tutorial , 2004, Pattern Recognit..

[17]  Lamberto Ballan,et al.  Human Action Recognition and Localization using Spatio-temporal Descriptors and Tracking , 2009 .

[18]  Min Hu,et al.  Video facial emotion recognition based on local enhanced motion history image and CNN-CTSLSTM networks , 2019, J. Vis. Commun. Image Represent..

[19]  Julian Magarey,et al.  Wavelet Transforms in Image Processing , 1998 .

[20]  Dahua Lin,et al.  Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition , 2018, AAAI.

[21]  Shiv Ram Dubey,et al.  Human Activity Recognition Using Gait Pattern , 2013, Int. J. Comput. Vis. Image Process..

[22]  Thomas Fechner,et al.  Pixel-level image fusion: the case of image sequences , 1998, Defense, Security, and Sensing.

[23]  Guo Li-Jun,et al.  Specific Human Detection from Surveillance Video Based on Color Invariant Moments , 2008, 2008 Second International Symposium on Intelligent Information Technology Application.

[24]  Mubarak Shah,et al.  A 3-dimensional sift descriptor and its application to action recognition , 2007, ACM Multimedia.

[25]  Dafang Zhuang,et al.  Survey of Multispectral Image Fusion Techniques in Remote Sensing Applications , 2011 .

[26]  Ajit S. Bopardikar,et al.  Wavelet transforms - introduction to theory and applications , 1998 .

[27]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[28]  Swati Nigam,et al.  An effective local feature descriptor for object detection in real scenes , 2013, 2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES.

[29]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[30]  R. Vijaya Durga,et al.  Region-Based Image Fusion Using Complex Wavelets , 2014 .

[31]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[32]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[33]  P. Ekman,et al.  Facial action coding system: a technique for the measurement of facial movement , 1978 .

[34]  Jong Chul Ye,et al.  A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction , 2016, Medical physics.

[35]  S. Noachtar,et al.  Multimodal Imaging in Extratemporal Epilepsy Surgery , 2018, Cureus.

[36]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[37]  Rajib Kumar Jha,et al.  Improved watermarking technique based on significant difference of lifting wavelet coefficients , 2015, Signal Image Video Process..

[38]  Carlo Meghini,et al.  Distributed Video Surveillance Using Smart Cameras , 2018, Journal of Grid Computing.

[39]  Yaser Sheikh,et al.  OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Kostas Karpouzis,et al.  Exploring trace transform for robust human action recognition , 2013, Pattern Recognit..

[41]  Guoqiang Xu,et al.  Multimodal Emotion Recognition for One-Minute-Gradual Emotion Challenge , 2018, ArXiv.

[42]  Siddharth Singh,et al.  Hybrid semi-blind image watermarking in redundant wavelet domain , 2017, Multimedia Tools and Applications.

[43]  Nuno Vasconcelos,et al.  Cost-Sensitive Support Vector Machines , 2012, Neurocomputing.

[44]  Limin Liu,et al.  Facial Expression Recognition Based on SSVM Algorithm and Multi-source Texture Feature Fusion Using KECA , 2019 .

[45]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[46]  Ronen Basri,et al.  Actions as space-time shapes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[47]  Andrea Cavallaro,et al.  Video Analytics for Surveillance: Theory and Practice [From the Guest Editors] , 2010 .

[48]  Ashish Khare,et al.  Curvelet transform-based technique for tracking of moving objects , 2012 .

[49]  Fatih Murat Porikli,et al.  Object Detection and Tracking , 2012, Video Analytics for Business Intelligence.

[50]  Zhi-Hong Guan,et al.  A hybrid SVD-DCT watermarking method based on LPSNR , 2004, Pattern Recognit. Lett..

[51]  Zhenming Peng,et al.  A novel reverse sparse model utilizing the spatio-temporal relationship of target templates for object tracking , 2019, Neurocomputing.

[52]  Rajeev Kumar Singh,et al.  A Survey: Digital Image Watermarking Techniques , 2014 .

[53]  Srinivasan Ramakrishnan,et al.  Fibonacci Based Key Frame Selection and Scrambling for Video Watermarking in DWT–SVD Domain , 2018, Wirel. Pers. Commun..

[54]  Huan-Long Zhang,et al.  Comparative study of dimension reduction and recognition algorithms of DCT and 2DPCA , 2008, 2008 International Conference on Machine Learning and Cybernetics.

[55]  Iwan Setyawan,et al.  Watermarking digital image and video data. A state-of-the-art overview , 2000 .

[56]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[57]  Md. Zia Uddin,et al.  Independent shape component-based human activity recognition via Hidden Markov Model , 2010, Applied Intelligence.

[58]  Jinwei Wang,et al.  Dynamic multi-watermarking and detecting in DWT domain , 2018, Journal of Real-Time Image Processing.

[59]  Martin F. H. Schuurmans,et al.  Digital watermarking , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.

[60]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[61]  Amit Kumar Singh,et al.  A recent survey on image watermarking techniques and its application in e-governance , 2018, Multimedia Tools and Applications.

[62]  George Mastorakis,et al.  Efficiency-Aware Watermarking using Different Wavelet Families for the Internet of Things , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[63]  Shiguo Lian,et al.  Optimum detection for Barni's multiplicative watermarking in DWT domain , 2008, ICC 2008.

[64]  Lijun Yin,et al.  EAC-Net: A Region-Based Deep Enhancing and Cropping Approach for Facial Action Unit Detection , 2017, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[65]  H. K. Garg,et al.  Maximum-likelihood detection in DWT domain image watermarking using Laplacian modeling , 2005, IEEE Signal Processing Letters.

[66]  Xuejun Dong,et al.  Wavelets for Agriculture and Biology: A Tutorial with Applications and Outlook , 2008 .

[67]  Mark R. Pickering,et al.  An Overview of Digital Video Watermarking , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[68]  Wageeh Boles,et al.  A suspicious behaviour detection using a context space model for smart surveillance systems , 2012, Comput. Vis. Image Underst..

[69]  Peter Bailis,et al.  Challenges and Opportunities in DNN-Based Video Analytics: A Demonstration of the BlazeIt Video Query Engine , 2019, CIDR.

[70]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[71]  Tania Stathaki,et al.  Image Fusion: Algorithms and Applications , 2008 .

[72]  Hong Liu,et al.  Related HOG Features for Human Detection Using Cascaded Adaboost and SVM Classifiers , 2013, MMM.

[73]  Colin Boyd,et al.  A Review of Medical Image Watermarking Requirements for Teleradiology , 2013, Journal of Digital Imaging.

[74]  Ton Kalker,et al.  A watermarking scheme for digital cinema , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[75]  Ashish Khare,et al.  Multimodal Medical Image Fusion in Dual Tree Complex Wavelet Transform Domain Using Maximum and Average Fusion Rules , 2012 .

[76]  Rajib Kumar Jha,et al.  Robust video watermarking using significant frame selection based on coefficient difference of lifting wavelet transform , 2017, Multimedia Tools and Applications.

[77]  Rajib Kumar Jha,et al.  Significant region based robust watermarking scheme in lifting wavelet transform domain , 2015, Expert Syst. Appl..

[78]  John See,et al.  Micro-expression recognition based on 3D flow convolutional neural network , 2018, Pattern Analysis and Applications.

[79]  Ioannis Pavlidis,et al.  Infrared and visible image fusion for face recognition , 2004, SPIE Defense + Commercial Sensing.

[80]  Gang Chen,et al.  Quaternion Zernike moments and their invariants for color image analysis and object recognition , 2012, Signal Process..

[81]  Yannick Benezeth,et al.  Human Interaction Recognition Based on the Co-occurrence of Visual Words , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[82]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[83]  Mingyu Lu,et al.  A novel color image watermarking scheme in nonsampled contourlet-domain , 2011, Expert Syst. Appl..

[84]  Liming Chen,et al.  Accurate Facial Parts Localization and Deep Learning for 3D Facial Expression Recognition , 2018, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[85]  Changyun Wen,et al.  Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion , 2019, IEEE Transactions on Industrial Electronics.

[86]  Jin Wang,et al.  RETRACTED ARTICLE: The visual object tracking algorithm research based on adaptive combination kernel , 2019, Journal of Ambient Intelligence and Humanized Computing.

[87]  Leonardo Lizzi,et al.  Object tracking through RSSI measurements in wireless sensor networks , 2008 .

[88]  Michael E. Fitzpatrick,et al.  Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform , 2017, Expert Syst. Appl..

[89]  Eftekhar Hossain,et al.  An Approach for the Detection and Classification of Tumor Cells from Bone MRI Using Wavelet Transform and KNN Classifier , 2018, 2018 International Conference on Innovation in Engineering and Technology (ICIET).

[90]  Jian Sun,et al.  Multimodal 2D+3D Facial Expression Recognition With Deep Fusion Convolutional Neural Network , 2017, IEEE Transactions on Multimedia.

[91]  KokSheik Wong,et al.  Automatic apex frame spotting in micro-expression database , 2015, 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR).

[92]  B. S. Manjunath,et al.  Multisensor Image Fusion Using the Wavelet Transform , 1995, CVGIP Graph. Model. Image Process..

[93]  Lavanya Sharma,et al.  From Visual Surveillance to Internet of Things , 2019 .

[94]  Takeo Kanade,et al.  Intelligent Access to Digital Video: Informedia Project , 1996, Computer.

[95]  S. G. Mallat Multiresolution Approach to Wavelets in Computer Vision , 1990 .

[96]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[97]  Yixin Yin,et al.  Decision-level fusion of infrared and visible images for face recognition , 2008, 2008 Chinese Control and Decision Conference.

[98]  R. Klessen,et al.  Histogram of oriented gradients: a technique for the study of molecular cloud formation , 2018, Astronomy & Astrophysics.

[99]  Wenqi He,et al.  Optical image watermarking based on singular value decomposition ghost imaging and lifting wavelet transform , 2019, Optics and Lasers in Engineering.

[100]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[101]  Michael J. Lyons,et al.  Evidence and a computational explanation of cultural differences in facial expression recognition. , 2010, Emotion.

[102]  Fang Liu,et al.  SAR Image segmentation based on convolutional-wavelet neural network and markov random field , 2017, Pattern Recognit..

[103]  Sergio Escalera,et al.  Robust non-blind color video watermarking using QR decomposition and entropy analysis , 2016, J. Vis. Commun. Image Represent..

[104]  Matti Pietikäinen,et al.  Towards Reading Hidden Emotions: A Comparative Study of Spontaneous Micro-Expression Spotting and Recognition Methods , 2015, IEEE Transactions on Affective Computing.

[105]  Chang-Su Kim,et al.  Object tracking under large motion: Combining coarse-to-fine search with superpixels , 2019, Inf. Sci..

[106]  Khalid M. Hosny Refined translation and scale Legendre moment invariants , 2010, Pattern Recognit. Lett..

[107]  Limin Wang,et al.  Action recognition with trajectory-pooled deep-convolutional descriptors , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Yun Zhang,et al.  Wavelet based image fusion techniques — An introduction, review and comparison , 2007 .

[109]  Guodong Guo,et al.  Learning from examples in the small sample case: face expression recognition , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[110]  Yuan-Pei Lin,et al.  Wavelet tree quantization for copyright protection watermarking , 2004, IEEE Transactions on Image Processing.

[111]  B. V. K. Vijaya Kumar,et al.  A multi-sensor fusion system for moving object detection and tracking in urban driving environments , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[112]  Swati Nigam,et al.  Multiresolution approach for multiple human detection using moments and local binary patterns , 2014, Multimedia Tools and Applications.

[113]  Manisha Sharma,et al.  Robust Scene-Based Digital Video Watermarking Scheme Using Level-3 DWT: Approach, Evaluation, and Experimentation , 2018 .

[114]  Dragos Nicolae Vizireanu,et al.  A robust digital watermarking scheme for video copyright protection in the wavelet domain , 2010 .

[115]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[116]  Siddharth Singh,et al.  Hybrid NSCT domain multiple watermarking for medical images , 2017, Multimedia Tools and Applications.

[117]  Xuelong Li,et al.  Efficient HOG human detection , 2011, Signal Process..

[118]  Millie Pant,et al.  Multipurpose image watermarking in the domain of DWT based on SVD and ABC , 2017, Pattern Recognit. Lett..

[119]  Yanan Liu,et al.  Capturing Human Motion based on Modified Hidden Markov Model in Multi-View Image Sequences , 2014, J. Multim..

[120]  Millie Pant,et al.  Robust and false positive free watermarking in IWT domain using SVD and ABC , 2016, Eng. Appl. Artif. Intell..

[121]  D. Zhang,et al.  Robust mean-shift tracking with corrected background-weighted histogram , 2012 .

[122]  Ingemar J. Cox,et al.  Copy protection for DVD video , 1999, Proc. IEEE.

[123]  Stefan Wermter,et al.  Continuous convolutional object tracking in developmental robot scenarios , 2019, Neurocomputing.

[124]  Wenbing Tao,et al.  Learning Linear Regression via Single-Convolutional Layer for Visual Object Tracking , 2019, IEEE Transactions on Multimedia.

[125]  Maja Pantic,et al.  Towards the automatic detection of spontaneous agreement and disagreement based on nonverbal behaviour: A survey of related cues, databases, and tools , 2013, Image Vis. Comput..

[126]  Swati Nigam,et al.  Integration of moment invariants and uniform local binary patterns for human activity recognition in video sequences , 2016, Multimedia Tools and Applications.

[127]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[128]  Saeed Rastegar,et al.  Hybrid watermarking algorithm based on Singular Value Decomposition and Radon transform , 2011 .

[129]  Jake K. Aggarwal,et al.  Human activity recognition from 3D data: A review , 2014, Pattern Recognit. Lett..

[130]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[131]  Sujing Wang,et al.  Micro-expression recognition with small sample size by transferring long-term convolutional neural network , 2018, Neurocomputing.

[132]  B M Garrett,et al.  The value of intelligent multimedia simulation for teaching clinical decision-making skills. , 2001, Nurse education today.

[133]  Jing Wang,et al.  Effective Crowd Anomaly Detection Through Spatio-temporal Texture Analysis , 2019, Int. J. Autom. Comput..

[134]  Chitra Dorai,et al.  Practicing vision: Integration, evaluation and applications , 1997, Pattern Recognit..

[135]  Patrick Shen-Pei Wang,et al.  Performance Comparisons of Facial Expression Recognition in Jaffe Database , 2008, Int. J. Pattern Recognit. Artif. Intell..

[136]  Liang Wang,et al.  Semantic Understanding of Human Behaviors in Image Sequences: From video-surveillance to video-hermeneutics , 2012, Comput. Vis. Image Underst..

[137]  Swati Nigam,et al.  Local Binary Patterns Based Facial Expression Recognition for Efficient Smart Applications , 2018, Security in Smart Cities: Models, Applications, and Challenges.

[138]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[139]  Shutao Li,et al.  Pixel-level image fusion: A survey of the state of the art , 2017, Inf. Fusion.

[140]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[141]  Bee Ee Khoo,et al.  A new robust and secure digital image watermarking scheme based on the integer wavelet transform and singular value decomposition , 2014, Digit. Signal Process..

[142]  M. Tomlinson,et al.  DWT-based high-capacity blind video watermarking, invariant to geometrical attacks , 2003 .

[143]  Xi Zhao,et al.  An efficient multimodal 2D + 3D feature-based approach to automatic facial expression recognition , 2015, Comput. Vis. Image Underst..

[144]  M. Barni,et al.  Data hiding for fighting piracy , 2004, IEEE Signal Processing Magazine.

[145]  Martin D. Levine,et al.  A Multi-Scale Hierarchical Codebook Method for Human Action Recognition in Videos Using a Single Example , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[146]  Tanzila Saba,et al.  Brain Tumor Detection from MRI images using Multi-level Wavelets , 2019, 2019 International Conference on Computer and Information Sciences (ICCIS).

[147]  Alex Pentland,et al.  Human computing and machine understanding of human behavior: a survey , 2006, ICMI '06.

[148]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[149]  A. Mansouri,et al.  SVD-based digital image watermarking using complex wavelet transform , 2009 .

[150]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[151]  Oliver Rockinger Pixel - Level Fusion of Image Sequences using Wavelet Frames , 1996 .

[152]  François Dubeau,et al.  Reproducibility of EEG‐MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy , 2018, Human brain mapping.

[153]  Laura Ricci,et al.  Aggregation Techniques for the Internet of Things: An Overview , 2018, The Internet of Things for Smart Urban Ecosystems.

[154]  Mohamed Elhoseny,et al.  Deep learning model for real-time image compression in Internet of Underwater Things (IoUT) , 2020, Journal of Real-Time Image Processing.

[155]  Yun Fu,et al.  Close Human Interaction Recognition Using Patch-Aware Models , 2016, IEEE Transactions on Image Processing.

[156]  Qiang Li,et al.  Adaptive DWT-SVD Domain Image Watermarking Using Human Visual Model , 2007, The 9th International Conference on Advanced Communication Technology.

[157]  Neha Jain,et al.  Effective approach for facial expression recognition using hybrid square-based diagonal pattern geometric model , 2019, Multimedia Tools and Applications.

[158]  Frank Y. Shih,et al.  Combinational image watermarking in the spatial and frequency domains , 2003, Pattern Recognit..

[159]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[160]  Zhengding Qiu,et al.  Multipurpose Watermarking Based on Multiscale Curvelet Transform , 2008, IEEE Transactions on Information Forensics and Security.

[161]  Swati Nigam,et al.  Towards Intelligent Human Behavior Detection for Video Surveillance , 2019, Censorship, Surveillance, and Privacy.

[162]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[163]  Yuanyuan Jiang,et al.  ROI-HOG and LBP Based Human Detection via Shape Part-Templates Matching , 2012, ICONIP.

[164]  Shiguang Shan,et al.  Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism , 2019, IEEE Transactions on Image Processing.

[165]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[166]  Swati Nigam,et al.  Moment invariants based object recognition for different pose and appearances in real scenes , 2013, 2013 International Conference on Informatics, Electronics and Vision (ICIEV).

[167]  Pascal Perez,et al.  Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City , 2019, Sensors.

[168]  Fernando De la Torre,et al.  Facial Expression Analysis , 2011, Visual Analysis of Humans.

[169]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[170]  Wanqing Li,et al.  A novel shape-based non-redundant local binary pattern descriptor for object detection , 2013, Pattern Recognit..

[171]  M. Kalaiselvi Geetha,et al.  Motion Intensity Code for Action Recognition in Video Using PCA and SVM , 2013, MIKE.

[172]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[173]  Zixiang Xiong,et al.  Multiresolution watermarking for images and video , 1999, IEEE Trans. Circuits Syst. Video Technol..

[174]  Chih-Chin Lai,et al.  Digital Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition , 2010, IEEE Transactions on Instrumentation and Measurement.

[175]  Ankit Chaudhary,et al.  Tracking of Fingertips and Centers of Palm Using KINECT , 2011, 2011 Third International Conference on Computational Intelligence, Modelling & Simulation.

[176]  Mauro Barni,et al.  A DCT-domain system for robust image watermarking , 1998, Signal Process..

[177]  Guoying Zhao,et al.  Can Micro-Expression be Recognized Based on Single Apex Frame? , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[178]  Nicolae Vizireanu,et al.  Quantisation-based video watermarking in the wavelet domain with spatial and temporal redundancy , 2011 .

[179]  Duqu Wei,et al.  An Optimized Image Watermarking Method Based on HD and SVD in DWT Domain , 2019, IEEE Access.

[180]  S. Mallat,et al.  Multiresolution representations and wavelets , 1988 .

[181]  Andrea Cavallaro,et al.  Video-Based Human Behavior Understanding: A Survey , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[182]  Li Wenbo,et al.  A chaos-based robust wavelet-domain watermarking algorithm , 2004 .

[183]  Jean-Luc Dugelay,et al.  A guide tour of video watermarking , 2003, Signal Process. Image Commun..

[184]  Peyman Ayubi,et al.  A blind and robust video watermarking based on IWT and new 3D generalized chaotic sine map , 2018 .

[185]  Ioannis Pitas,et al.  Robust image watermarking in the spatial domain , 1998, Signal Process..

[186]  Nilesh Bhaskarrao Bahadure,et al.  Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm , 2018, Journal of Digital Imaging.

[187]  Iasonas Kokkinos,et al.  DensePose: Dense Human Pose Estimation in the Wild , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[188]  Yuan F. Zheng,et al.  Object tracking using the Gabor wavelet transform and the golden section algorithm , 2002, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[189]  Huai-Qian Khor,et al.  A Shallow Triple Stream Three-dimensional CNN (STSTNet) for Micro-expression Recognition System , 2019, ArXiv.

[190]  Shuai Li,et al.  A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain , 2018, IEEE Transactions on Image Processing.

[191]  Ashish Khare,et al.  Fusion of multimodal medical images using Daubechies complex wavelet transform - A multiresolution approach , 2014, Inf. Fusion.

[192]  Matti Pietikäinen,et al.  Spontaneous facial micro-expression analysis using Spatiotemporal Completed Local Quantized Patterns , 2016, Neurocomputing.

[193]  Özal Yildirim,et al.  A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification , 2018, Comput. Biol. Medicine.

[194]  Jiayi Ma,et al.  Infrared and visible image fusion methods and applications: A survey , 2018, Inf. Fusion.

[195]  S. Lal,et al.  Spontaneous Facial Expression Analysis Using Optical Flow Technique , 2018, Modern Sensing Technologies.

[196]  Jean-Marc Odobez,et al.  Multi-Layer Background Subtraction Based on Color and Texture , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[197]  Byoung Chul Ko,et al.  Three-level cascade of random forests for rapid human detection , 2013 .

[198]  Yan Tang,et al.  Geometric-Convolutional Feature Fusion Based on Learning Propagation for Facial Expression Recognition , 2018, IEEE Access.

[199]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[200]  Chokri Ben Amar,et al.  A dynamic video watermarking algorithm in fast motion areas in the wavelet domain , 2011, Multimedia Tools and Applications.

[201]  Belur V. Dasarathy,et al.  Medical Image Fusion: A survey of the state of the art , 2013, Inf. Fusion.

[202]  Jeng-Shyang Pan,et al.  Genetic watermarking based on transform-domain techniques , 2004, Pattern Recognit..

[203]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[204]  Swati Nigam,et al.  Multiscale Local Binary Patterns for Facial Expression-Based Human Emotion Recognition , 2015 .

[205]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[206]  Wei Lu,et al.  Digital image splicing detection based on Markov features in DCT and DWT domain , 2012, Pattern Recognit..

[207]  I. Daubechies,et al.  Wavelet Transforms That Map Integers to Integers , 1998 .

[208]  Fadi Al-Turjman,et al.  Intelligent UAVs for Multimedia Delivery in Smart-Cities’ Applications , 2018 .

[209]  John See,et al.  Efficient Spatio-Temporal Local Binary Patterns for Spontaneous Facial Micro-Expression Recognition , 2015, PloS one.

[210]  Robert Bergevin,et al.  Semantic human activity recognition: A literature review , 2015, Pattern Recognit..

[211]  Guillaume-Alexandre Bilodeau,et al.  SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity , 2015, IEEE Transactions on Image Processing.

[212]  Ioannis Pitas,et al.  Circularly symmetric watermark embedding in 2-D DFT domain , 2001, IEEE Trans. Image Process..

[213]  Loganathan Agilandeeswari,et al.  A robust color video watermarking scheme based on hybrid embedding techniques , 2015, Multimedia Tools and Applications.

[214]  Yufeng Ge,et al.  Wavelet incorporated spectral analysis for soil property determination , 2006 .

[215]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[216]  David Zhang,et al.  Robust Object Tracking Using Joint Color-Texture Histogram , 2009, Int. J. Pattern Recognit. Artif. Intell..

[217]  Martin Lauer,et al.  Online Multi-Object Tracking Using Joint Domain Information in Traffic Scenarios , 2020, IEEE Transactions on Intelligent Transportation Systems.

[218]  Faisel T. Illiyas,et al.  Human stampedes during religious festivals: A comparative review of mass gathering emergencies in India , 2013 .

[219]  Jan Flusser,et al.  Combined blur and affine moment invariants and their use in pattern recognition , 2003, Pattern Recognit..

[220]  Namita Mittal,et al.  Using CNN for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy , 2019, The Visual Computer.

[221]  Swati Nigam,et al.  Efficient facial expression recognition using histogram of oriented gradients in wavelet domain , 2018, Multimedia Tools and Applications.

[222]  Mohammad Reza Mohammadi,et al.  PCA-based dictionary building for accurate facial expression recognition via sparse representation , 2014, J. Vis. Commun. Image Represent..

[223]  Alessandro Neri,et al.  Video watermarking in the 3D-DWT domain using perceptual masking , 2005, IEEE International Conference on Image Processing 2005.

[224]  Xuan-Phung Huynh,et al.  Convolutional Neural Network Models for Facial Expression Recognition Using BU-3DFE Database , 2016 .

[225]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[226]  Lakhmi C. Jain,et al.  Intelligent Interactive Multimedia Systems and Services , 2014 .

[227]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[228]  Bernd Girod,et al.  CHoG: Compressed histogram of gradients A low bit-rate feature descriptor , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[229]  Stéphane Mallat,et al.  Wavelets for a vision , 1996, Proc. IEEE.

[230]  Emile H. L. Aarts,et al.  Ambient intelligence: a multimedia perspective , 2004, IEEE MultiMedia.

[231]  Paul Bao,et al.  Image adaptive watermarking using wavelet domain singular value decomposition , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[232]  M. Posner,et al.  Visual dominance: an information-processing account of its origins and significance. , 1976, Psychological review.

[233]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[234]  Guoying Zhao,et al.  Micro-Expression Recognition Using Robust Principal Component Analysis and Local Spatiotemporal Directional Features , 2014, ECCV Workshops.

[235]  Gang Wang,et al.  Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition , 2016, ECCV.

[236]  Tieniu Tan,et al.  Boosted local structured HOG-LBP for object localization , 2011, CVPR 2011.

[237]  Changyin Sun,et al.  Real-time human detection based on gentle MILBoost with variable granularity HOG-CSLBP , 2012, Neural Computing and Applications.

[238]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[239]  Martin D. Levine,et al.  Human activity recognition in videos using a single example , 2013, Image Vis. Comput..

[240]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[241]  Hong Zhang,et al.  COROLA: A Sequential Solution to Moving Object Detection Using Low-rank Approximation , 2015, Comput. Vis. Image Underst..

[242]  Jacey-Lynn Minoi,et al.  3D Face Recognition using Kernel-based PCA Approach , 2018, Lecture Notes in Electrical Engineering.

[243]  Jong Chul Ye,et al.  Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems , 2017, SIAM J. Imaging Sci..

[244]  Saeid Fazli,et al.  A robust image watermarking method based on DWT, DCT, and SVD using a new technique for correction of main geometric attacks , 2016 .

[245]  Yen-Wei Chen,et al.  Robust multi-logo watermarking by RDWT and ICA , 2006, Signal Process..

[246]  KokSheik Wong,et al.  Automatic Micro-expression Recognition from Long Video Using a Single Spotted Apex , 2016, ACCV Workshops.

[247]  Osama S. Faragallah,et al.  Efficient video watermarking based on singular value decomposition in the discrete wavelet transform domain , 2013 .

[248]  Unsang Park,et al.  Compositional interaction descriptor for human interaction recognition , 2017, Neurocomputing.

[249]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[250]  Aurobinda Routray,et al.  Fuzzy Histogram of Optical Flow Orientations for Micro-Expression Recognition , 2019, IEEE Transactions on Affective Computing.

[251]  Guanghong Gong,et al.  Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer , 2018, Sensors.

[252]  Amit Kumar Singh,et al.  Survey of robust and imperceptible watermarking , 2018, Multimedia Tools and Applications.

[253]  John See,et al.  LBP with Six Intersection Points: Reducing Redundant Information in LBP-TOP for Micro-expression Recognition , 2014, ACCV.

[254]  Cüneyt Güzelis,et al.  A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering , 2014, Neural Computing and Applications.

[255]  Muhammad Sher,et al.  Automated multi-feature human interaction recognition in complex environment , 2018, Comput. Ind..

[256]  Swati Nigam,et al.  Towards Classification Based Human Activity Recognition in Video Sequences , 2013, ICCASA.

[257]  Nasrin M. Makbol,et al.  Robust blind image watermarking scheme based on Redundant Discrete Wavelet Transform and Singular Value Decomposition , 2013 .

[258]  KokSheik Wong,et al.  Subtle Expression Recognition Using Optical Strain Weighted Features , 2014, ACCV Workshops.

[259]  Azzedine Boukerche,et al.  A Predictive Energy-Efficient Technique to Support Object-Tracking Sensor Networks , 2011, IEEE Transactions on Vehicular Technology.

[260]  Guoying Zhao,et al.  Selective deep features for micro-expression recognition , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[261]  Kh. Manglem Singh,et al.  A robust rotation resilient video watermarking scheme based on the SIFT , 2018, Multimedia Tools and Applications.

[262]  Jose A. Antonino-Daviu,et al.  Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools , 2015, IEEE Transactions on Industrial Electronics.

[263]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[264]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[265]  Dirk Helbing,et al.  From Crowd Dynamics to Crowd Safety: a Video-Based Analysis , 2008, Adv. Complex Syst..

[266]  Swati Nigam,et al.  Curvelet transform based object tracking , 2010, 2010 International Conference on Computer and Communication Technology (ICCCT).

[267]  Ahmet M. Eskicioglu,et al.  Robust DCT-SVD domain image watermarking for copyright protection: Embedding data in all frequencies , 2005, 2005 13th European Signal Processing Conference.

[268]  Qingshan Liu,et al.  Learning Multiscale Active Facial Patches for Expression Analysis , 2015, IEEE Transactions on Cybernetics.

[269]  Guoying Zhao,et al.  A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition , 2016, IEEE Transactions on Affective Computing.

[270]  Hans Burkhardt,et al.  SHOG - Spherical HOG Descriptors for Rotation Invariant 3D Object Detection , 2011, DAGM-Symposium.

[271]  Basim Nasih,et al.  Application of Wavelet Transform and Its Advantages Compared To Fourier Transform , 2016 .

[272]  Vinay Bettadapura,et al.  Face Expression Recognition and Analysis: The State of the Art , 2012, ArXiv.

[273]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[274]  Dian Tjondronegoro,et al.  Facial Expression Recognition Using Facial Movement Features , 2011, IEEE Transactions on Affective Computing.

[275]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[276]  KokSheik Wong,et al.  Optical strain based recognition of subtle emotions , 2014, 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS).

[277]  Saeid Belkasim,et al.  Multiresolution Fourier Descriptors for Multiresolution Shape Analysis , 2012, IEEE Signal Processing Letters.

[278]  Amit Kumar Singh,et al.  Hybrid Technique for Robust and Imperceptible Image Watermarking in DWT–DCT–SVD Domain , 2014, National Academy Science Letters.

[279]  Chih-Min Lin,et al.  Breast Tumor Classification Using Fast Convergence Recurrent Wavelet Elman Neural Networks , 2019, Neural Processing Letters.

[280]  Steve B. Jiang,et al.  Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking , 2007, Physics in medicine and biology.

[281]  David Vernon,et al.  Machine vision - automated visual inspection and robot vision , 1991 .

[282]  Mohan M. Trivedi,et al.  Computer Vision and Image Understanding xxx (2011) xxx–xxx Contents lists available at SciVerse ScienceDirect Computer Vision and Image Understanding , 2022 .

[283]  J. Flusser,et al.  Moments and Moment Invariants in Pattern Recognition , 2009 .

[284]  Amit Kumar Singh,et al.  Robust and Secure Multiple Watermarking in Wavelet Domain , 2015 .

[285]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[286]  Swati Nigam,et al.  A Review of Computational Approaches for Human Behavior Detection , 2018 .

[287]  Sazali Yaacob,et al.  Comparison of Features Based on Spectral Estimation for the Analysis of EEG Signals in Driver Behavior , 2018, 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA).

[288]  Gwen Littlewort,et al.  Recognizing facial expression: machine learning and application to spontaneous behavior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[289]  Wei-Chuen Yau,et al.  OFF-ApexNet on Micro-expression Recognition System , 2018, Signal Process. Image Commun..

[290]  J. E. Fowler,et al.  The redundant discrete wavelet transform and additive noise , 2005, IEEE Signal Processing Letters.

[291]  Thomas Brox,et al.  Fast Rotation Invariant 3D Feature Computation Utilizing Efficient Local Neighborhood Operators , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[292]  Anupam Agrawal,et al.  A survey on activity recognition and behavior understanding in video surveillance , 2012, The Visual Computer.

[293]  Xiang-Gen Xia,et al.  A multiresolution watermark for digital images , 1997, Proceedings of International Conference on Image Processing.

[294]  Baharum Baharudin,et al.  Detecting People Using Histogram of Oriented Gradients: A Step towards Abnormal Human Activity Detection , 2014 .