On optimising the estimation of high quantiles of a probability distribution
暂无分享,去创建一个
L. Haan | A. Ferreira | L. de Haan | L. Peng¶ | A. Ferreira*,† | L. de Haan* | L. Peng¶ | Ana Ferreira | Liang Peng
[1] Jón Dańıelsson,et al. Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .
[2] Dennis W. Jansen,et al. On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective , 1989 .
[3] Richard L. Smith. Threshold Methods for Sample Extremes , 1984 .
[4] U. Stadtmüller,et al. Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[5] Laurens de Haan,et al. Fighting the arch–enemy with mathematics‘ , 1990 .
[6] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[7] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[8] H. Joe. Estimation of quantiles of the maximum of N observations , 1987 .
[9] Holger Drees,et al. On Smooth Statistical Tail Functionals , 1998 .
[10] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[11] Patrick Billingsley,et al. Weak convergence of measures - applications in probability , 1971, CBMS-NSF regional conference series in applied mathematics.
[12] Dennis D. Boos,et al. Using extreme value theory to estimate large percentiles , 1984 .
[13] L. de Haan,et al. On the maximal life span of humans. , 1994, Mathematical population studies.
[14] Peter Hall,et al. On the estimation of extreme tail probabilities , 1997 .
[15] H. Bergström,et al. Weak convergence of measures , 1982 .
[16] Edgar Kaufmann,et al. Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .
[17] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[18] J. Einmahl. The empirical distribution function as a tail estimator. , 1990 .