Fast detection, position and classification of moving objects on production line

This paper presents a decision analysis method for detection, position and classification of moving objects on automatic production line. The decision is based on the coordinates of moving objects in the image frames, and the displacement information provided by servo motor control synchronized with a conveyor belt. Multiple objects to identify duplication or omission can be avoided. The method for smart packing robot can provide reliable location information of measured objects.

[1]  A. Barber,et al.  Traffic sensor using a color vision method , 1997, Other Conferences.

[2]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[5]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[6]  Bernt Schiele,et al.  Model-free tracking of cars and people based on color regions , 2006, Image Vis. Comput..

[7]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[8]  David C. Hogg,et al.  Learning Variable-Length Markov Models of Behavior , 2001, Comput. Vis. Image Underst..

[9]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Joachim M. Buhmann,et al.  Topology free hidden Markov models: application to background modeling , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.