GAMMA-RAY BURST AND STAR FORMATION RATES: THE PHYSICAL ORIGIN FOR THE REDSHIFT EVOLUTION OF THEIR RATIO

Gamma-ray bursts (GRBs) and galaxies at high redshift represent complementary probes of the star formation history of the universe. In fact, both the GRB rate and the galaxy luminosity density are connected to the underlying star formation. Here, we combine a star formation model for the evolution of the galaxy luminosity function from z = 0 to z = 10 with a metallicity-dependent efficiency for GRB formation to simultaneously predict the comoving GRB rate. Our model sheds light on the physical origin of the empirical relation often assumed between GRB rate and luminosity density-derived star formation rate: , with ε(z)∝(1 + z)1.2. At z ≲ 4, ε(z) is dominated by the effects of metallicity evolution in the GRB efficiency. Our best-fitting model only requires a moderate preference for low-metallicity, that is a GRB rate per unit stellar mass about four times higher for log (Z/Z☉) < −3 compared to log (Z/Z☉) > 0. Models with total suppression of GRB formation at log (Z/Z☉) ≳ 0 are disfavored. At z ≳ 4, most of the star formation happens in low-metallicity hosts with nearly saturated efficiency of GRB production per unit stellar mass. However, at the same epoch, galaxy surveys miss an increasing fraction of the predicted luminosity density because of flux limits, driving an accelerated evolution of ε(z) compared to the empirical power-law fit from lower z. Our findings are consistent with the non-detections of GRB hosts in ultradeep imaging at z > 5, and point toward current galaxy surveys at z > 8 only observing the top 15%–20% of the total luminosity density.

[1]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[2]  A. Fruchter,et al.  THE METAL AVERSION OF LONG-DURATION GAMMA-RAY BURSTS , 2013 .

[3]  D. A. Kann,et al.  The low-extinction afterglow in the solar-metallicity host galaxy of γ-ray burst 110918A , 2013, 1306.0892.

[4]  Ye-Fei Yuan,et al.  IS THE METALLICITY OF THE PROGENITOR OF LONG GAMMA-RAY BURSTS REALLY LOW? , 2013, 1305.5165.

[5]  Ipac,et al.  ULTRA-FAINT ULTRAVIOLET GALAXIES AT z ∼ 2 BEHIND THE LENSING CLUSTER A1689: THE LUMINOSITY FUNCTION, DUST EXTINCTION, AND STAR FORMATION RATE DENSITY , 2013, 1305.2413.

[6]  Ž. Ivezić,et al.  ACTIVE GALACTIC NUCLEUS AND STARBURST RADIO EMISSION FROM OPTICALLY SELECTED QUASI-STELLAR OBJECTS , 2013 .

[7]  T. Piran,et al.  RECONCILING THE GAMMA-RAY BURST RATE AND STAR FORMATION HISTORIES , 2013, 1303.4809.

[8]  J. Fynbo,et al.  A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION , 2013, 1301.5903.

[9]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[10]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[11]  Chris L. Fryer,et al.  THE 12C + 12C REACTION AND THE IMPACT ON NUCLEOSYNTHESIS IN MASSIVE STARS , 2012, 1212.3962.

[12]  Risa H. Wechsler,et al.  ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY , 2012, 1209.3013.

[13]  Andrew J. Levan,et al.  THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS , 2012, 1205.3162.

[14]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[15]  D. O. Astronomy,et al.  THE STAR FORMATION RATE FUNCTION FOR REDSHIFT z ∼ 4–7 GALAXIES: EVIDENCE FOR A UNIFORM BUILDUP OF STAR-FORMING GALAXIES DURING THE FIRST 3 Gyr OF COSMIC TIME , 2012, 1204.3626.

[16]  Britton D. Smith,et al.  CRITICAL STAR FORMATION RATES FOR REIONIZATION: FULL REIONIZATION OCCURS AT REDSHIFT z ≈ 7 , 2012 .

[17]  R. Perna,et al.  GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT z ≳ 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION , 2012, 1202.0010.

[18]  A. J. Levan,et al.  STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG , 2012, 1201.6074.

[19]  J. Prochaska,et al.  Detection of Pristine Gas Two Billion Years After the Big Bang , 2011, Science.

[20]  J. Greiner,et al.  Supersolar metal abundances in two galaxies at z ∼ 3.57 revealed by the GRB 090323 afterglow spectrum , 2011, 1110.4642.

[21]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[22]  Bing Zhang,et al.  Gamma-ray burst rate: high-redshift excess and its possible origins , 2011, 1105.4650.

[23]  P. Schady,et al.  The nature of "dark" gamma-ray bursts , 2010, 1011.0618.

[24]  J. W. MacKenty,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.

[25]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[26]  Edo Berger,et al.  NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS , 2010, 1007.0439.

[27]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[28]  R. Bouwens,et al.  THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.

[29]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[30]  Stsci,et al.  METAL-FREE GAS SUPPLY AT THE EDGE OF REIONIZATION: LATE-EPOCH POPULATION III STAR FORMATION , 2009, 0905.4504.

[31]  E. O. Ofek,et al.  THE HOST GALAXIES OF SWIFT DARK GAMMA-RAY BURSTS: OBSERVATIONAL CONSTRAINTS ON HIGHLY OBSCURED AND VERY HIGH REDSHIFT GRBs , 2009, 0905.0001.

[32]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[33]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[34]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[35]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[36]  N. Langer,et al.  Single star progenitors of long gamma-ray bursts - I. Model grids and redshift dependent GRB rate , 2006, astro-ph/0606637.

[37]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[38]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[39]  Chris L. Fryer,et al.  Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae , 2004, astro-ph/0412024.

[40]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[41]  D. Frail,et al.  A Submillimeter and Radio Survey of Gamma-Ray Burst Host Galaxies: A Glimpse into the Future of Star Formation Studies , 2002, astro-ph/0210645.

[42]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[43]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[44]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[45]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[46]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .