Nucleic Acid Probes for Single-Molecule Localization Imaging of Cellular Biomolecules

[1]  B. Klaholz,et al.  splitSMLM, a spectral demixing method for high-precision multi-color localization microscopy applied to nuclear pore complexes , 2022, Communications Biology.

[2]  E. New,et al.  Photochemical Mechanisms of Fluorophores Employed in Single‐Molecule Localization Microscopy , 2022, Angewandte Chemie.

[3]  Genxi Li,et al.  Fabrication of a Polyvalent Aptamer Network on an Electrode Surface for Capture and Analysis of Circulating Tumor Cells. , 2022, Analytical chemistry.

[4]  Qian Li,et al.  DNA-PAINT Super-Resolution Imaging for Characterization of Nucleic Acid Nanostructures. , 2022, ChemPlusChem.

[5]  Jian Li,et al.  Screening and Specificity Analysis of Aptamer in Infiltrating Ductal Carcinoma of Breast , 2022, ChemistrySelect.

[6]  Chenxiang Lin,et al.  Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging , 2022, Nature Methods.

[7]  Tao Zhang,et al.  Functionalizing Framework Nucleic‐Acid‐Based Nanostructures for Biomedical Application , 2021, Advanced materials.

[8]  D. Klenerman,et al.  A Platform for Site‐Specific DNA‐Antibody Bioconjugation by Using Benzoylacrylic‐Labelled Oligonucleotides , 2021, Angewandte Chemie.

[9]  Dayong Yang,et al.  Construction and applications of DNA-based nanomaterials in cancer therapy , 2021, Chinese Chemical Letters.

[10]  C. Joo,et al.  Completing the canvas: advances and challenges for DNA-PAINT super-resolution imaging. , 2021, Trends in biochemical sciences.

[11]  Arianna Mencattini,et al.  DeepCEL0 for 2D Single Molecule Localization in Fluorescence Microscopy , 2021, Bioinform..

[12]  L. Mostaço-Guidolin,et al.  Optical Microscopy and the Extracellular Matrix Structure: A Review , 2021, Cells.

[13]  Abhichart Krissanaprasit,et al.  Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. , 2021, Chemical reviews.

[14]  S. Manley,et al.  Single-molecule localization microscopy , 2021, Nature Reviews Methods Primers.

[15]  Xiaoyu Cheng,et al.  Probing Biosensing Interfaces With Single Molecule Localization Microscopy (SMLM) , 2021, Frontiers in Chemistry.

[16]  Yi Xiao,et al.  Clickable rhodamine spirolactam based spontaneously blinking probe for super-resolution imaging , 2021 .

[17]  K. Gaus,et al.  The Benefits of Unnatural Amino Acid Incorporation as Protein Labels for Single Molecule Localization Microscopy , 2021, Frontiers in Chemistry.

[18]  Hongda Wang,et al.  Organization of Protein Tyrosine Kinase-7 on Cell Membranes Characterized by Aptamer Probe-Based STORM Imaging. , 2020, Analytical chemistry.

[19]  N. He,et al.  A novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues , 2020 .

[20]  Peng Yin,et al.  Super‐Resolution Spatial Proximity Detection with Proximity‐PAINT , 2020, Angewandte Chemie.

[21]  J. Ries,et al.  Quantitative Data Analysis in Single-Molecule Localization Microscopy. , 2020, Trends in cell biology.

[22]  D. H. Burke,et al.  Aptamers with Tunable Affinity Enable Single‐Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells , 2020, Angewandte Chemie.

[23]  M. Batish,et al.  Methods for spatial and temporal imaging of the different steps involved in RNA processing at single‐molecule resolution , 2020, Wiley interdisciplinary reviews. RNA.

[24]  Ismail M. Khater,et al.  A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods , 2020, Patterns.

[25]  Yang Liu,et al.  Super-resolution localization microscopy: Toward high throughput, high quality, and low cost. , 2020, APL photonics.

[26]  Mingi Kim,et al.  Reductively Caged, Photoactivatable DNA-PAINT for High-throughput Super-resolution Microscopy. , 2020, Angewandte Chemie.

[27]  Wesley R. Legant,et al.  3D ATAC-PALM: Super-resolution Imaging of the Accessible Genome , 2020, Nature Methods.

[28]  Christophe Leterrier,et al.  About samples, giving examples: Optimized Single Molecule Localization Microscopy. , 2020, Methods.

[29]  P. M. Pereira,et al.  Super‐beacons: Open‐source probes with spontaneous tuneable blinking compatible with live‐cell super‐resolution microscopy , 2020, bioRxiv.

[30]  Yuchao Li,et al.  Single-cell biomagnifier for optical nanoscopes and nanotweezers , 2019, Light: Science & Applications.

[31]  Michael Zhuo Wang,et al.  Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis , 2019, Cells.

[32]  L. Lavis,et al.  Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. , 2019, ACS chemical biology.

[33]  H. Hackl,et al.  Modeling therapy resistance via the EGFR signaling pathway , 2019, The FEBS journal.

[34]  M. Gijs,et al.  Super-resolution optical imaging: A comparison , 2019, Micro and Nano Engineering.

[35]  Jong Seung Kim,et al.  Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights and future possibilities , 2019, Coordination Chemistry Reviews.

[36]  Maximilian T. Strauss,et al.  Site-Specific Labeling of Affimers for DNA-PAINT Microscopy. , 2018, Angewandte Chemie.

[37]  Fan Yang,et al.  Framework-Nucleic-Acid-Enabled Biosensor Development. , 2018, ACS sensors.

[38]  P. Dedecker,et al.  An introduction to optical super-resolution microscopy for the adventurous biologist , 2018, Methods and applications in fluorescence.

[39]  Ke Xu,et al.  Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy. , 2018, Accounts of chemical research.

[40]  S. Hohng,et al.  Accelerated super-resolution imaging with FRET-PAINT , 2017, Molecular Brain.

[41]  Maximilian T. Strauss,et al.  Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes. , 2017, Nano letters.

[42]  Fengming Yang,et al.  Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts , 2017, Molecular Cancer.

[43]  Melike Lakadamyali,et al.  DNA Origami offers a versatile method for quantifying protein copy-number in super-resolution , 2017, Nature Methods.

[44]  Maximilian T. Strauss,et al.  Super-resolution microscopy with DNA-PAINT , 2017, Nature Protocols.

[45]  Y. Shechtman,et al.  Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. , 2017, Chemical reviews.

[46]  J. Neuzil,et al.  Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy , 2017, Experimental & Molecular Medicine.

[47]  Nam-Joon Cho,et al.  Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. , 2016, Analytical chemistry.

[48]  Yiping Cui,et al.  Imaging and Intracellular Tracking of Cancer-Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution Microscope. , 2016, ACS applied materials & interfaces.

[49]  Leiji Zhou,et al.  Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine. , 2016, Chemistry.

[50]  Mingjun Cai,et al.  Enhanced dSTORM imaging using fluorophores interacting with cucurbituril , 2016, Science China Chemistry.

[51]  Yanli Wen,et al.  Biomedical Applications of DNA‐Nanomaterials Based on Metallic Nanoparticles and DNA Self‐Assembled Nanostructures , 2016 .

[52]  Baoquan Ding,et al.  Self-Assembled DNA Nanostructures for Drug Delivery , 2016 .

[53]  X. Li,et al.  CD24 associates with EGFR and supports EGF/EGFR signaling via RhoA in gastric cancer cells , 2016, Journal of Translational Medicine.

[54]  Ricardo Henriques,et al.  PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors. , 2015, Methods.

[55]  Peng Yin,et al.  A Compact DNA Cube with Side Length 10 nm. , 2015, Small.

[56]  Christian Pilarsky,et al.  Glypican-1 identifies cancer exosomes and detects early pancreatic cancer , 2015, Nature.

[57]  Peng Yin,et al.  Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes , 2015, Nature Communications.

[58]  P. Unrau,et al.  RNA complex purification using high‐affinity fluorescent RNA aptamer tags , 2015, Annals of the New York Academy of Sciences.

[59]  Maryam Kabiri,et al.  Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies. , 2014, Biomacromolecules.

[60]  Alex D. Herbert,et al.  Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy , 2014, Nucleic acids research.

[61]  D. Klenerman,et al.  The changing point-spread function: single-molecule-based super-resolution imaging , 2014, Histochemistry and Cell Biology.

[62]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[63]  M. Cieśla,et al.  MicroRNAs as biomarkers of disease onset , 2011, Analytical and bioanalytical chemistry.

[64]  M. Girolami,et al.  Recommendations for Biomarker Identification and Qualification in Clinical Proteomics , 2010, Science Translational Medicine.

[65]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[66]  L. Hellman,et al.  Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions , 2007, Nature Protocols.

[67]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[68]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[69]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[70]  S. Ram,et al.  Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. DeMets,et al.  Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework , 2001, Clinical pharmacology and therapeutics.

[72]  W. Dougall,et al.  Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: a mechanism of interreceptor kinase activation and transphosphorylation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Airinei,et al.  Intra-/inter-molecular interactions – Identification and evaluation by optical spectral data in solution , 2017 .