New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides.

Photocatalytic production of transportation fuels should be among our long term strategies to achieve energy and environmental sustainability for the planet, but the technology is hampered by a lack of sufficiently efficient catalysts. Although efficiency is ultimately determined by laboratory measurements, theory and computation have become powerful tools for examining underlying mechanisms and guiding avenues of inquiry. In this review, we focus on first principles calculations of transition metal oxide semiconductor photocatalysts. We discuss how theory can be applied to investigate various aspects of a photocatalytic cycle: light absorption, electron/hole transport, band edge alignments of semiconductors, and surface chemistry. Emphasis is placed on identifying accurate models for specific properties and theoretical insights into improving photocatalytic performance.

[1]  E. Carter,et al.  Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals. , 2012, Journal of chemical theory and computation.

[2]  E. Carter,et al.  Non-innocent dissociation of H2O on GaP(110): implications for electrochemical reduction of CO2. , 2012, Journal of the American Chemical Society.

[3]  E. Carter,et al.  Hole Transport in Nonstoichiometric and Doped Wüstite , 2012 .

[4]  E. Carter,et al.  Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. , 2012, Journal of the American Chemical Society.

[5]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[6]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[7]  E. Carter,et al.  Hole transport in pure and doped hematite , 2012 .

[8]  E. Carter,et al.  Importance of reference Hamiltonians containing exact exchange for accurate one-shot G W calculations of Cu 2 O , 2012 .

[9]  J. VandeVondele,et al.  Hole Localization and Thermochemistry of Oxidative Dehydrogenation of Aqueous Rutile TiO2(110) , 2012 .

[10]  Niall J. English,et al.  Band gap engineering of (N, Si)-codoped TiO2 from hybrid density functional theory calculations , 2012 .

[11]  A. Rodríguez‐Fortea,et al.  Ab initio absorption spectrum of NiO combining molecular dynamics with the embedded cluster approach in a discrete reaction field , 2012 .

[12]  E. Carter,et al.  Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst , 2012 .

[13]  Fenggong Wang,et al.  Doping of WO3 for Photocatalytic Water Splitting: Hints from Density Functional Theory , 2012 .

[14]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[15]  Wenchao Huang First-principles determination of the absolute band-edge positions of BiOX (X = F, Cl, Br, I) , 2012 .

[16]  Hong Jiang Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach , 2012 .

[17]  L. Curtiss,et al.  Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces , 2012 .

[18]  J. Barber,et al.  Recent advances in hybrid photocatalysts for solar fuel production , 2012 .

[19]  G. Su,et al.  Charged states and band-gap narrowing in codoped ZnO nanowires for enhanced photoelectrochemical responses: Density functional first-principles calculations , 2012, 1202.5364.

[20]  F. Zaera Probing liquid/solid interfaces at the molecular level. , 2012, Chemical reviews.

[21]  Y. Ping,et al.  Solution of the Bethe-Salpeter equation without empty electronic states: Application to the absorption spectra of bulk systems , 2012 .

[22]  Daniel Escudero,et al.  Progress and challenges in the calculation of electronic excited states. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[24]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[25]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[26]  S. Sharifzadeh,et al.  Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype , 2012 .

[27]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[28]  A. Yaresko,et al.  Electronic Structure of Strongly Correlated Systems , 2011 .

[29]  Kazuhiko Maeda,et al.  Photocatalytic water splitting using semiconductor particles: History and recent developments , 2011 .

[30]  Chen Huang,et al.  Potential-functional embedding theory for molecules and materials. , 2011, The Journal of chemical physics.

[31]  S. Xiong,et al.  Ab initio study on band-gap narrowing in SrTiO 3 with Nb-C-Nb codoping , 2011 .

[32]  A. Vojvodić,et al.  Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition‐Metal Substitution , 2011 .

[33]  E. Carter,et al.  Optical excitations in hematite (α-Fe2O3) via embedded cluster models: A CASPT2 study , 2011 .

[34]  M. Gruning,et al.  Real-time approach to the optical properties of solids and nanostructures: Time-dependent Bethe-Salpeter equation , 2011, 1109.2424.

[35]  E. Carter,et al.  Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark. , 2011, Physical chemistry chemical physics : PCCP.

[36]  E. Carter,et al.  First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[37]  Liejin Guo,et al.  First-principles study on absolute band edge positions for II–VI semiconductors at (1 1 0) surface , 2011 .

[38]  L. Reining,et al.  First-principles study of the band structure and optical absorption of CuGaS2 , 2011 .

[39]  George H. Booth,et al.  Natural Orbitals for Wave Function Based Correlated Calculations Using a Plane Wave Basis Set. , 2011, Journal of chemical theory and computation.

[40]  Andrew A. Peterson,et al.  Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces , 2011 .

[41]  Niall J. English,et al.  Band gap engineering of double-cation-impurity-doped anatase-titania for visible-light photocatalysts: a hybrid density functional theory approach. , 2011, Physical chemistry chemical physics : PCCP.

[42]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[43]  J Rossmeisl,et al.  On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. , 2011, The Journal of chemical physics.

[44]  A. Hellman,et al.  First-Principles Study of Photoinduced Water-Splitting on Fe2O3 , 2011 .

[45]  G. Henkelman,et al.  Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.

[46]  G. Ceder,et al.  Prediction of semiconductor band edge positions in aqueous environments from first principles , 2011 .

[47]  S. Tomić,et al.  First-principles optical response of semiconductors and oxide materials , 2011 .

[48]  Stafford W. Sheehan,et al.  Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review , 2011 .

[49]  Chen Huang,et al.  Quantum mechanical embedding theory based on a unique embedding potential. , 2011, The Journal of chemical physics.

[50]  E. Carter,et al.  Electron transport in pure and doped hematite. , 2011, Nano letters.

[51]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .

[52]  L. Seijo,et al.  Ce and La single- and double-substitutional defects in yttrium aluminum garnet: first-principles study. , 2011, The journal of physical chemistry. A.

[53]  Yan-Feng Chen,et al.  First principles calculations of N:H co-doping effect on energy gap narrowing ofZnO , 2010 .

[54]  S. Hammes-Schiffer,et al.  Theory of coupled electron and proton transfer reactions. , 2010, Chemical reviews.

[55]  T. Jacob,et al.  Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). , 2010, Angewandte Chemie.

[56]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[57]  L. Seijo,et al.  Structural, electronic, and spectroscopic effects of Ga codoping on Ce-doped yttrium aluminum garnet: First-principles study , 2010 .

[58]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[59]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[60]  D. Lu,et al.  Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. , 2010, The Journal of chemical physics.

[61]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[62]  Thomas Bligaard,et al.  Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations , 2010 .

[63]  Gregory Jerkiewicz,et al.  Theoretical investigations of the oxygen reduction reaction on Pt(111). , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[65]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[66]  K. Domen,et al.  Photoluminescence Spectroscopic and Computational Investigation of the Origin of the Visible Light Response of (Ga1−xZnx)(N1−xOx) Photocatalyst for Overall Water Splitting , 2010 .

[67]  Jun Cheng,et al.  Aligning electronic energy levels at the TiO2/H2O interface , 2010 .

[68]  Ying Dai,et al.  Codoping synergistic effects in N-doped SrTiO(3) for higher energy conversion efficiency. , 2010, Physical chemistry chemical physics : PCCP.

[69]  P. B. Allen,et al.  Photocatalytic Water Oxidation at the GaN (101̄0)-Water Interface , 2010 .

[70]  M. Scheffler,et al.  First-principles modeling of localized d states with the GW@LDA+U approach , 2010 .

[71]  Xian Zhao,et al.  First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride. , 2010, Inorganic chemistry.

[72]  W. Landman Climate change 2007: the physical science basis , 2010 .

[73]  K. Ohno,et al.  All-electron first-principles GW+Bethe-Salpeter calculation for optical absorption spectra of sodium clusters , 2010 .

[74]  Niall J. English,et al.  Synergistic Effects on Band Gap-Narrowing in Titania by Codoping from First-Principles Calculations , 2010 .

[75]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[76]  G. Kroes,et al.  Cluster Study of the Photo-Oxidation of Water on Rutile Titanium Dioxide (TiO2) , 2010 .

[77]  Alex Zunger,et al.  Accurate prediction of defect properties in density functional supercell calculations , 2009 .

[78]  R. Nieminen Issues in first-principles calculations for defects in semiconductors and oxides , 2009 .

[79]  Andreas Höglund,et al.  Density functional theory calculations of defect energies using supercells , 2009 .

[80]  P. Sushko,et al.  Modelling of electron and hole trapping in oxides , 2009 .

[81]  M. Stoneham Defects in semiconductors and oxides: where are the gaps in first principles theory? , 2009 .

[82]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[83]  L. Seijo,et al.  Improved embedding ab initio model potentials for embedded cluster calculations. , 2009, The journal of physical chemistry. A.

[84]  X. Gong,et al.  Identifying Optimal Inorganic Nanomaterials for Hybrid Solar Cells , 2009 .

[85]  Lin-wang Wang Computational challenges for nanostructure solar cells , 2009 .

[86]  K. Merz,et al.  Explicitly representing the solvation shell in continuum solvent calculations. , 2009, The journal of physical chemistry. A.

[87]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[88]  A. Zunger,et al.  Polaronic Hole Localization and Multiple Hole Binding of Acceptors in Oxide Wide-Gap Semiconductors , 2009, 0905.0018.

[89]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[90]  Guosheng Shao,et al.  Red Shift in Manganese-and Iron-Doped TiO2 : A DFT+U Analysis , 2009 .

[91]  S. Sharifzadeh,et al.  All-electron embedded correlated wavefunction theory for condensed matter electronic structure , 2009 .

[92]  Suhuai Wei,et al.  Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. , 2009, Physical review letters.

[93]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[94]  Benjamin G. Janesko,et al.  Range separation and local hybridization in density functional theory. , 2008, The journal of physical chemistry. A.

[95]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[96]  L. Pratt,et al.  Quasichemical theory with a soft cutoff. , 2008, The Journal of chemical physics.

[97]  Cesare Pisani,et al.  Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications , 2008, J. Comput. Chem..

[98]  Y. Nohara,et al.  GW approximation with LSDA + U method and applications to NiO, MnO, and V 2 O 3 , 2008, 0809.4568.

[99]  J. Nørskov,et al.  The nature of the active site in heterogeneous metal catalysis. , 2008, Chemical Society reviews.

[100]  Georg Kresse,et al.  Dielectric properties and excitons for extended systems from hybrid functionals , 2008 .

[101]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[102]  Emily A Carter,et al.  Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. , 2008, The Journal of chemical physics.

[103]  J. Nørskov,et al.  Oxidation and Photo-Oxidation of Water on TiO2 Surface , 2008 .

[104]  G. Pacchioni Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. , 2008, The Journal of chemical physics.

[105]  G. Pacchioni,et al.  Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of N−F Codoping of TiO2 , 2008 .

[106]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[107]  Nathan P. Siegel,et al.  Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles , 2008 .

[108]  N. A. Deskins,et al.  A Shell Model for Atomistic Simulation of Charge Transfer in Titania , 2008 .

[109]  Emily A Carter,et al.  Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. , 2008, Annual review of physical chemistry.

[110]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[111]  K. Domen,et al.  Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light , 2008 .

[112]  T. Van Voorhis,et al.  On the singlet-triplet splitting of geminate electron-hole pairs in organic semiconductors. , 2008, Journal of the American Chemical Society.

[113]  M. Newton,et al.  First-Principles Studies of the Structural and Electronic Properties of the (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst , 2008 .

[114]  J. Paier,et al.  Hybrid functionals applied to extended systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[115]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[116]  G. Kresse,et al.  Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. , 2007, Physical review letters.

[117]  Kesong Yang,et al.  Understanding Photocatalytic Activity of S- and P-Doped TiO2 under Visible Light from First-Principles , 2007 .

[118]  Emily A. Carter,et al.  Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations , 2007 .

[119]  S. Kerisit,et al.  Kinetic Monte Carlo model of charge transport in hematite (α-Fe2O3) , 2007 .

[120]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[121]  Akihiko Kudo,et al.  Recent progress in the development of visible light-driven powdered photocatalysts for water splitting , 2007 .

[122]  Baibiao Huang,et al.  Study of the Nitrogen Concentration Influence on N-Doped TiO2Anatase from First-Principles Calculations , 2007 .

[123]  Alex Zunger,et al.  Origins of the p-Type Nature and Cation Deficiency in Cu2O and Related Materials , 2007 .

[124]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[125]  W. Liu,et al.  First-principles study of the surface energy and work function of III-V semiconductor compounds , 2007 .

[126]  H. Jónsson,et al.  Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. , 2007, Physical chemistry chemical physics : PCCP.

[127]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[128]  N. A. Deskins,et al.  Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterization , 2007 .

[129]  Lucia Reining,et al.  Efficient ab initio calculations of bound and continuum excitons in the absorption spectra of semico , 2007, 0705.3140.

[130]  J. Nørskov,et al.  Large-scale, density functional theory-based screening of alloys for hydrogen evolution , 2007 .

[131]  Hao Wu,et al.  Solar energy conversion. , 2007 .

[132]  A. Zunger,et al.  Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots , 2007 .

[133]  L. Reining,et al.  Time-dependent density-functional theory for extended systems , 2007 .

[134]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[135]  Jinlong Yang,et al.  Electronic and magnetic properties of V-doped anatase TiO2 from first principles , 2006, cond-mat/0612206.

[136]  M. Nolan,et al.  The p-type conduction mechanism in Cu2O: a first principles study. , 2006, Physical chemistry chemical physics : PCCP.

[137]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[138]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[139]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[140]  B. Kroposki,et al.  Electrolysis: Information and Opportunities for Electric Power Utilities , 2006 .

[141]  Emily A Carter,et al.  Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter. , 2006, The Journal of chemical physics.

[142]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[143]  F. Bechstedt,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2006, cond-mat/0604447.

[144]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[145]  S. Kerisit,et al.  Computer simulation of electron transfer at hematite surfaces , 2006 .

[146]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[147]  A. Kasuya,et al.  In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. , 2006, Faraday discussions.

[148]  A. Lichtenstein First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 2006 .

[149]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[150]  V. Zhukov,et al.  Lifetimes and inelastic mean free path of low-energy excited electrons in Fe, Ni, Pt, and Au: Ab initio GW+T calculations , 2006 .

[151]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[152]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[153]  S. Louie,et al.  Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. , 2005, Physical review letters.

[154]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[155]  Kazuhiko Maeda,et al.  GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. , 2005, Journal of the American Chemical Society.

[156]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[157]  Michel Dupuis,et al.  Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3 , 2005 .

[158]  T. Kotani,et al.  Quasiparticle self-consistent GW theory. , 2005, Physical review letters.

[159]  D. Fuks,et al.  Ab initio thermodynamics of BacSr(1-c)TiO3solid solutions , 2005 .

[160]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[161]  H. Mizuseki,et al.  Electronic structure and optical properties of the Co-doped anatase TiO 2 studied from first principles , 2004, cond-mat/0603779.

[162]  M. Dupuis,et al.  Reorganization energy associated with small polaron mobility in iron oxide. , 2004, The Journal of chemical physics.

[163]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2003, Physical review letters.

[164]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[165]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[166]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[167]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[168]  D. Bahnemann,et al.  Enhancement of the photocatalytic activity of various TiO2 materials by platinisation , 2002 .

[169]  N. Govind,et al.  Klüner et al. Reply , 2002 .

[170]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[171]  J. Riveros,et al.  The Cluster−Continuum Model for the Calculation of the Solvation Free Energy of Ionic Species , 2001 .

[172]  N. Govind,et al.  Prediction of electronic excited states of adsorbates on metal surfaces from first principles. , 2001, Physical review letters.

[173]  R. Broer,et al.  Midinfrared spectrum of undoped cuprates: d-d transitions studied by ab initio methods , 2000 .

[174]  G. Pacchioni QUANTUM CHEMISTRY OF OXIDE SURFACES: FROM CO CHEMISORPTION TO THE IDENTIFICATION OF THE STRUCTURE AND NATURE OF POINT DEFECTS ON MgO , 2000 .

[175]  A. Shluger,et al.  Relative energies of surface and defect states: ab initio calculations for the MgO (001) surface , 2000 .

[176]  Schultz,et al.  Charged local defects in extended systems , 2000, Physical review letters.

[177]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[178]  N. Govind,et al.  Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems , 1999 .

[179]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[180]  P. Blaha,et al.  Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency , 1999 .

[181]  Emily A. Carter,et al.  Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment , 1998 .

[182]  R. Broer,et al.  Theoretical study of the crystal field excitations in CoO , 1998 .

[183]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[184]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[185]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[186]  E. Ethridge,et al.  Reformulation of the LDA+U method for a local orbital basis , 1996, cond-mat/9611225.

[187]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[188]  V. Anisimov,et al.  Insulating gap in FeO: Correlations and covalency , 1996, cond-mat/9610147.

[189]  R. Broer,et al.  Electron correlation effects on the d-d excitations in NiO , 1996 .

[190]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[191]  A. H. de Vries,et al.  Implementation of reaction field methods in quantum chemistry computer codes , 1995, J. Comput. Chem..

[192]  S. Hüfner,et al.  Electronic structure of NiO and related 3d-transition-metal compounds , 1994 .

[193]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[194]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[195]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[196]  Cortona,et al.  Self-consistently determined properties of solids without band-structure calculations. , 1991, Physical review. B, Condensed matter.

[197]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[198]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[199]  L. Seijo,et al.  The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+ , 1988 .

[200]  Janssen,et al.  Band gap in NiO: A cluster study. , 1988, Physical review. B, Condensed matter.

[201]  Wei,et al.  Role of metal d states in II-VI semiconductors. , 1988, Physical review. B, Condensed matter.

[202]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[203]  N. Winter,et al.  Theoretical study of a Cu+ ion impurity in a NaF host , 1987 .

[204]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[205]  Axel D. Becke,et al.  Density Functional Calculations of Molecular Bond Energies , 1986 .

[206]  David M. Sherman,et al.  Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV , 1985 .

[207]  Kiyoyuki Terakura,et al.  Band theory of insulating transition-metal monoxides: Band-structure calculations , 1984 .

[208]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[209]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[210]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[211]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[212]  T. C. Mcgill,et al.  Oxidation of silicon surfaces , 1981 .

[213]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[214]  D. Fröhlich,et al.  Investigation of exciton fine structure in Cu 2 O , 1981 .

[215]  W. White,et al.  Optical absorption spectrum of hematite, αFe2O3 near IR to UV☆ , 1980 .

[216]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[217]  P. Merchant,et al.  The electrical, optical and photoconducting properties of Fe2−xCrxO3 (0 ⩽ x ⩽ 0.47) , 1979 .

[218]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[219]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[220]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[221]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[222]  H. Bethe,et al.  A Relativistic equation for bound state problems , 1951 .

[223]  J. Brønsted Acid and Basic Catalysis. , 1928 .

[224]  Zahira Yaakob,et al.  An Enthusiastic Glance in to the Visible Responsive Photocatalysts for Energy Production and Pollutant Removal, with Special Emphasis on Titania , 2012 .

[225]  A. Zunger,et al.  Band or Polaron: The Hole Conduction Mechanism in the p-Type Spinel Rh2ZnO4 , 2012 .

[226]  Y. Liu,et al.  Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition , 2012 .

[227]  M. Cococcioni Accurate and Efficient Calculations on Strongly Correlated Minerals with the LDA+U Method: Review and Perspectives , 2010 .

[228]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[229]  Emily A. Carter,et al.  Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states , 2002 .

[230]  G. Wijs,et al.  The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5 , 2001 .

[231]  M. Payne,et al.  Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane‐wave study , 2000 .

[232]  P. Vogl,et al.  Stability and Band Offsets of SiC/GaN, SiC/AlN, and AlN/GaN Heterostructures , 1996 .

[233]  W. Goddard,et al.  Relationships between bond energies in coordinatively unsaturated and coordinatively saturated transition-metal complexes: a quantitative guide for single, double, and triple bonds , 1988 .

[234]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[235]  Isaiah Shavitt,et al.  The Method of Configuration Interaction , 1977 .

[236]  A. J. Bosman,et al.  Small-polaron versus band conduction in some transition-metal oxides , 1970 .

[237]  M. G. Evans,et al.  Inertia and driving force of chemical reactions , 1938 .