tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9

[1]  S. J. Lee,et al.  New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference , 2023, ACS synthetic biology.

[2]  A. James,et al.  CRISPR mediated transactivation in the human disease vector Aedes aegypti , 2022, bioRxiv.

[3]  Víctor López Del Amo,et al.  Cas9/Nickase-induced allelic conversion by homologous chromosome-templated repair in Drosophila somatic cells. , 2022, Science advances.

[4]  N. Perrimon,et al.  State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. , 2021, Trends in genetics : TIG.

[5]  Martin J. Aryee,et al.  Augmenting and directing long-range CRISPR-mediated activation in human cells , 2021, Nature Methods.

[6]  G. Feng,et al.  Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair , 2021, Cell.

[7]  Joerg Stelling,et al.  Multistable and dynamic CRISPRi-based synthetic circuits , 2020, Nature Communications.

[8]  Joshua W. Modell,et al.  A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression , 2020, Cell.

[9]  Jian Xu,et al.  Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing , 2020, Nature Communications.

[10]  Georg Oberhofer,et al.  Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements , 2019, Proceedings of the National Academy of Sciences.

[11]  Navneet Matharu,et al.  CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency , 2019, Science.

[12]  Feng Han,et al.  Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9 , 2018, Cell Discovery.

[13]  Bowen Xu,et al.  Next-generation CRISPR/Cas9 transcriptional activation in Drosophila using flySAM , 2018, Proceedings of the National Academy of Sciences.

[14]  A. Kopp,et al.  A Distalless-responsive enhancer of the Hox gene Sex combs reduced is required for segment- and sex-specific sensory organ development in Drosophila , 2018, PLoS genetics.

[15]  S. Levine,et al.  The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription , 2017, The EMBO journal.

[16]  Matthew Deaner,et al.  Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae. , 2017, ACS synthetic biology.

[17]  Ji-Long Liu,et al.  Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference , 2016, Nucleic acids research.

[18]  Feng Zhang,et al.  Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease , 2015, Nature Biotechnology.

[19]  G. Church,et al.  Cas9 gRNA engineering for genome editing, activation and repression , 2015, Nature Methods.

[20]  Yanhui Hu,et al.  The Transgenic RNAi Project at Harvard Medical School: Resources and Validation , 2015, Genetics.

[21]  N. Perrimon,et al.  In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila , 2015, Genetics.

[22]  Ethan Bier,et al.  The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations , 2015, Science.

[23]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[24]  Ron Weiss,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2014, Nature Methods.

[25]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[26]  Andrew R. Bassett,et al.  CRISPR/Cas9 mediated genome engineering in Drosophila. , 2014, Methods.

[27]  Simon L. Bullock,et al.  Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[28]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[29]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[30]  C. Rubinstein,et al.  Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila , 2014, Genetics.

[31]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[32]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[33]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[34]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[35]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[36]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[37]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[38]  R. Jiao,et al.  Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[39]  S. Swarup,et al.  Wnt/Wingless signaling in Drosophila. , 2012, Cold Spring Harbor perspectives in biology.

[40]  N. Matsuki,et al.  p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors , 2011, Journal of Cell Science.

[41]  P. Wittkopp,et al.  Nomadic Enhancers: Tissue-Specific cis-Regulatory Elements of yellow Have Divergent Genomic Positions among Drosophila Species , 2010, PLoS genetics.

[42]  P. Wittkopp,et al.  Intraspecific Polymorphism to Interspecific Divergence: Genetics of Pigmentation in Drosophila , 2009, Science.

[43]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[44]  M. Levine,et al.  Long-range enhancer–promoter interactions in the Scr-Antp interval of the Drosophila Antennapedia complex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Bier,et al.  Activation of the knirps locus links patterning to morphogenesis of the second wing vein in Drosophila , 2003, Development.

[46]  Dana Carroll,et al.  Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. , 2002, Genetics.

[47]  Y. Rong,et al.  Gene targeting by homologous recombination in Drosophila. , 2000, Science.

[48]  D. Otteson,et al.  A functional and structural analysis of the Sex combs reduced locus of Drosophila melanogaster. , 1991, Genetics.

[49]  V. Corces,et al.  Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. , 1987, Genes & development.

[50]  G M Rubin,et al.  DNA sequence of the white locus of Drosophila melanogaster. , 1984, Journal of molecular biology.