Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem

A tandem configuration of perovskite and silicon solar cells is a promising way to achieve high-efficiency solar energy conversion at low cost. Four-terminal tandems, in which each cell is connected independently, avoid the need for current matching between the top and bottom cells, giving greater design flexibility. In a four-terminal tandem, the perovskite top cell requires two transparent contacts. Through detailed analysis of electrical and optical power losses, we identify optimum contact parameters and outline directions for the development of future transparent contacts for tandem cells. A semitransparent perovskite cell is fabricated with steady-state efficiency exceeding 12% and broadband near infrared transmittance of >80% using optimized sputtered indium tin oxide front and rear contacts. Our semitransparent cell exhibits much less hysteresis than opaque reference cells. A four-terminal perovskite on silicon tandem efficiency of more than 20% is achieved, and we identify clear pathways to exceed the current single silicon cell record of 25.6%.

[1]  H. Moutinho,et al.  Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films , 2004 .

[2]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[3]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[4]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[5]  Joseph George,et al.  Electrical and optical properties of electron beam evaporated ITO thin films , 2000 .

[6]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[7]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[8]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[9]  K. Catchpole,et al.  Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency , 2014, IEEE Journal of Photovoltaics.

[10]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[11]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[12]  Tianmin Wang,et al.  EFFECTS OF HEAT TREATMENT ON PROPERTIES OF ITO FILMS PREPARED BY RF MAGNETRON SPUTTERING , 2004 .

[13]  D. Cameron,et al.  Investigation of annealing effects on sol-gel deposited indium tin oxide thin films in different atmospheres , 2002 .

[14]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[15]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[16]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[17]  Yang Yang,et al.  Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells. , 2015, ACS nano.

[18]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[19]  Christophe Ballif,et al.  Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells , 2014, IEEE Journal of Photovoltaics.

[20]  Wolfgang Kowalsky,et al.  Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode , 2009 .

[21]  Zheng-Hong Lu,et al.  Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces , 2013 .

[22]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[23]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[25]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[26]  Y. Qi,et al.  Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films , 2015 .

[27]  S. Zakeeruddin,et al.  Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. , 2015, ACS nano.

[28]  Soon Mi Park,et al.  Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices , 2010 .

[29]  Yongli Gao,et al.  Work function recovery of air exposed molybdenum oxide thin films with vacuum annealing , 2012 .

[30]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[31]  Feng Yan,et al.  Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes , 2015, Advanced materials.

[32]  D. Cameron,et al.  Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process , 2000 .

[33]  Yongli Gao,et al.  Effects of exposure and air annealing on MoOx thin films , 2012 .

[34]  K. Catchpole,et al.  Optics and Light Trapping for Tandem Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.