Broad‐Spectral‐Response Nanocarbon Bulk‐Heterojunction Excitonic Photodetectors

High-performance broad-spectrum nanocarbon bulk-heterojunction photovoltaic photodetectors are reported. These reported photodetectors consist of a semiconducting single-walled carbon nanotube (s-SWCNT) and a PC71 BM blended active layer. Magnetic-field effects and the chirality of the s-SWCNTs play an important role in controlling the photoresponse time and photocurrent improvement.

[1]  T. Swager,et al.  Emerging Applications of Carbon Nanotubes , 2011 .

[2]  Meng-Yin Wu,et al.  Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. , 2011, Nano letters.

[3]  Yongli Gao,et al.  Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. , 2012, ACS nano.

[4]  Jenny Nelson,et al.  Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT:fullerene blend films for organic solar cells. , 2012, ACS nano.

[5]  M. Shao,et al.  Magnetic‐Field Effects in Organic Semiconducting Materials and Devices , 2009 .

[6]  M. Triebel,et al.  On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS , 2005 .

[7]  L. Dai,et al.  Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High‐Performance Bulk Heterojunction Solar Cells , 2012, Advanced materials.

[8]  L. Lauhon,et al.  Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. , 2012, ACS nano.

[9]  Franklin Kim,et al.  Surfactant-free water-processable photoconductive all-carbon composite. , 2011, Journal of the American Chemical Society.

[10]  J. Howe,et al.  Improvement of photovoltaic response based on enhancement of spin-orbital coupling and triplet states in organic solar cells , 2008 .

[11]  Guangyong Li,et al.  Design, Manufacturing, and Testing of Single-Carbon-Nanotube-Based Infrared Sensors , 2009, IEEE Transactions on Nanotechnology.

[12]  Shenqiang Ren,et al.  Nanocarbon-based photovoltaics. , 2012, ACS nano.

[13]  Yongye Liang,et al.  Intra‐Molecular Donor–Acceptor Interaction Effects on Charge Dissociation, Charge Transport, and Charge Collection in Bulk‐Heterojunction Organic Solar Cells , 2011 .

[14]  L. Lauhon,et al.  Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. , 2013, Chemical Society Reviews.

[15]  Muhammad Safdar,et al.  High-performance UV-visible-NIR broad spectral photodetectors based on one-dimensional In₂Te₃ nanostructures. , 2012, Nano letters.

[16]  Judy Z. Wu,et al.  Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors. , 2012, Nano letters.

[17]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[18]  Tobin J Marks,et al.  Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. , 2013, Small.

[19]  T. Salim,et al.  Carrier Dynamics in Polymer Nanofiber:Fullerene Solar Cells , 2012 .

[20]  Bin Hu,et al.  Photovoltaic Processes of Singlet and Triplet Excited States in Organic Solar Cells , 2008 .

[21]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[22]  Michael S Strano,et al.  Polymer‐Free Near‐Infrared Photovoltaics with Single Chirality (6,5) Semiconducting Carbon Nanotube Active Layers , 2012, Advanced materials.

[23]  Vladimir Bulovic,et al.  Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. , 2011, Nano letters.

[24]  Tianyou Zhai,et al.  Single‐Crystalline Sb2Se3 Nanowires for High‐Performance Field Emitters and Photodetectors , 2010, Advanced materials.

[25]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[26]  Benjamin J. Leever,et al.  Narrow Diameter Distributions of Metallic Arc Discharge Single‐Walled Carbon Nanotubes via Dual‐Iteration Density Gradient Ultracentrifugation , 2012, Advanced materials.

[27]  T. Kaneko,et al.  Infrared photovoltaic solar cells based on C60 fullerene encapsulated single-walled carbon nanotubes , 2010 .

[28]  J. Baek,et al.  Carbon nanomaterials for advanced energy conversion and storage. , 2012, Small.

[29]  Eric Verploegen,et al.  Photoconductive Hybrid Films via Directional Self‐Assembly of C60 on Aligned Carbon Nanotubes , 2012 .

[30]  SEMICONDUCTING CARBON NANOTUBE PHOTOVOLTAIC PHOTODETECTORS , 2011 .

[31]  Tianyou Zhai,et al.  Ultrahigh‐Performance Solar‐Blind Photodetectors Based on Individual Single‐crystalline In2Ge2O7 Nanobelts , 2010, Advanced materials.

[32]  Liang Yan,et al.  Positive and negative magnetic field effects in organic semiconducting materials , 2009 .

[33]  Ryan E. Brock,et al.  Electronically Monodisperse Single‐Walled Carbon Nanotube Thin Films as Transparent Conducting Anodes in Organic Photovoltaic Devices , 2011 .

[34]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[35]  I. Ivanov,et al.  Giant Magnetic Field Effects on Electroluminescence in Electrochemical Cells , 2011, Advanced materials.

[36]  M. Engel,et al.  The polarized carbon nanotube thin film LED. , 2010, Optics express.

[37]  Xin Xu,et al.  Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. , 2009, Nano letters.

[38]  Q. Gong,et al.  Femtosecond Time-Resolved Fluorescence Study of P3HT/PCBM Blend Films , 2010 .

[39]  Martin Heeney,et al.  Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells , 2012 .

[40]  Lianmao Peng,et al.  Carbon nanotube arrays based high-performance infrared photodetector [Invited] , 2012 .

[41]  Jianwei Liu,et al.  Iron Pyrite (FeS2) Broad Spectral and Magnetically Responsive Photodetectors , 2013 .

[42]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[43]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[44]  A. Green,et al.  Nearly Single‐Chirality Single‐Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation , 2011, Advanced materials.

[45]  Mark C. Hersam,et al.  Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. , 2008, Nano letters.

[46]  Maurizio Prato,et al.  [60]Fullerene chemistry for materials science applications , 1997 .