Discrete spherical means of directional derivatives and Veronese maps
暂无分享,去创建一个
Alexander Belyaev | Boris Khesin | Serge Tabachnikov | A. Belyaev | S. Tabachnikov | B. Khesin | A. Belyaev
[1] David R. Westhead,et al. Improved prediction of protein-protein binding sites using a support vector machines approach. , 2005, Bioinformatics.
[2] Nicu Sebe,et al. Image saliency by isocentric curvedness and color , 2009, 2009 IEEE 12th International Conference on Computer Vision.
[3] S. Childress. Fast Dynamo Theory , 1992 .
[4] P. Seymour,et al. Averaging sets: A generalization of mean values and spherical designs , 1984 .
[5] A. Friedman,et al. Functions satsifying the mean value property , 1962 .
[6] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[7] Yiming Hong. On Spherical t-designs in ℝ2 , 1982, Eur. J. Comb..
[8] Hans-Peter Seidel,et al. Exact and interpolatory quadratures for curvature tensor estimation , 2007, Comput. Aided Geom. Des..
[9] Jitendra Malik,et al. Anisotropic Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.
[10] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[11] Andrea J. van Doorn,et al. Surface shape and curvature scales , 1992, Image Vis. Comput..
[12] L. Kantorovich,et al. Approximate methods of higher analysis , 1960 .
[13] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[14] Alexander G. Belyaev,et al. On transfinite barycentric coordinates , 2006, SGP '06.
[15] Johannes Wallner,et al. Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..
[16] Azriel Rosenfeld,et al. Optimally isotropic Laplacian operator , 1999, IEEE Trans. Image Process..
[17] W. G. Bickley. FINITE DIFFERENCE FORMULAE FOR THE SQUARE LATTICE , 1948 .
[18] Liang Zhong,et al. Left ventricular regional wall curvedness and wall stress in patients with ischemic dilated cardiomyopathy. , 2009, American journal of physiology. Heart and circulatory physiology.
[19] Hanno Scharr,et al. A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..
[20] Rafael C. González,et al. Digital image processing, 3rd Edition , 2008 .
[21] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[22] Eitan Grinspun,et al. Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.
[23] Gabriel Taubin,et al. Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.
[24] Hanno Scharr,et al. Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung , 1997, DAGM-Symposium.
[25] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[26] G. Birkhoff,et al. Numerical Solution of Elliptic Problems , 1984 .
[27] Mikko Karttunen,et al. Stencils with isotropic discretization error for differential operators , 2006 .
[28] P. Lafrance,et al. Digital filters , 1974, Proceedings of the IEEE.
[29] Gjlles Aubert,et al. Mathematical problems in image processing , 2001 .
[30] T. Colonius,et al. Computational aeroacoustics: progress on nonlinear problems of sound generation , 2004 .
[31] Leonidas J. Guibas,et al. Robust Voronoi-based curvature and feature estimation , 2009, Symposium on Solid and Physical Modeling.
[32] V. Arnold,et al. Topological methods in hydrodynamics , 1998 .
[33] William J. Gordon,et al. PSEUDO-HARMONIC INTERPOLATION ON CONVEX DOMAINS* , 1974 .
[34] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[35] Hanno Scharr,et al. Principles of Filter Design , 1999 .
[36] Titus Petrila,et al. Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics , 2004 .
[37] Eiichi Bannai,et al. A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..
[38] A. Stroud. Approximate calculation of multiple integrals , 1973 .