Discrete spherical means of directional derivatives and Veronese maps

Abstract We describe and study geometric properties of discrete circular and spherical means of directional derivatives of functions, as well as discrete approximations of higher order differential operators. For an arbitrary dimension, we present a general construction for obtaining discrete spherical means of directional derivatives. The construction is based on using Minkowski’s existence theorem and Veronese maps. Approximating the directional derivatives by appropriate finite differences allows one to obtain finite difference operators with good rotation invariance properties. In particular, we use discrete circular and spherical means to derive discrete approximations of various linear and nonlinear first- and second-order differential operators, including discrete Laplacians. A practical potential of our approach is demonstrated by considering applications to nonlinear filtering of digital images and surface curvature estimation.

[1]  David R. Westhead,et al.  Improved prediction of protein-protein binding sites using a support vector machines approach. , 2005, Bioinformatics.

[2]  Nicu Sebe,et al.  Image saliency by isocentric curvedness and color , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[3]  S. Childress Fast Dynamo Theory , 1992 .

[4]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[5]  A. Friedman,et al.  Functions satsifying the mean value property , 1962 .

[6]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[7]  Yiming Hong On Spherical t-designs in ℝ2 , 1982, Eur. J. Comb..

[8]  Hans-Peter Seidel,et al.  Exact and interpolatory quadratures for curvature tensor estimation , 2007, Comput. Aided Geom. Des..

[9]  Jitendra Malik,et al.  Anisotropic Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[10]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[11]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[12]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[13]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[14]  Alexander G. Belyaev,et al.  On transfinite barycentric coordinates , 2006, SGP '06.

[15]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[16]  Azriel Rosenfeld,et al.  Optimally isotropic Laplacian operator , 1999, IEEE Trans. Image Process..

[17]  W. G. Bickley FINITE DIFFERENCE FORMULAE FOR THE SQUARE LATTICE , 1948 .

[18]  Liang Zhong,et al.  Left ventricular regional wall curvedness and wall stress in patients with ischemic dilated cardiomyopathy. , 2009, American journal of physiology. Heart and circulatory physiology.

[19]  Hanno Scharr,et al.  A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance , 2002, J. Vis. Commun. Image Represent..

[20]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[21]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[23]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[24]  Hanno Scharr,et al.  Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung , 1997, DAGM-Symposium.

[25]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[26]  G. Birkhoff,et al.  Numerical Solution of Elliptic Problems , 1984 .

[27]  Mikko Karttunen,et al.  Stencils with isotropic discretization error for differential operators , 2006 .

[28]  P. Lafrance,et al.  Digital filters , 1974, Proceedings of the IEEE.

[29]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[30]  T. Colonius,et al.  Computational aeroacoustics: progress on nonlinear problems of sound generation , 2004 .

[31]  Leonidas J. Guibas,et al.  Robust Voronoi-based curvature and feature estimation , 2009, Symposium on Solid and Physical Modeling.

[32]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[33]  William J. Gordon,et al.  PSEUDO-HARMONIC INTERPOLATION ON CONVEX DOMAINS* , 1974 .

[34]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[35]  Hanno Scharr,et al.  Principles of Filter Design , 1999 .

[36]  Titus Petrila,et al.  Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics , 2004 .

[37]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[38]  A. Stroud Approximate calculation of multiple integrals , 1973 .