Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection.

[1]  P. Bozza,et al.  Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis. , 2012, Memorias do Instituto Oswaldo Cruz.

[2]  P. Bozza,et al.  PPARγ Expression and Function in Mycobacterial Infection: Roles in Lipid Metabolism, Immunity, and Bacterial Killing , 2012, PPAR research.

[3]  Pawan Gupta,et al.  Mycobacterium tuberculosis Modulates Macrophage Lipid-Sensing Nuclear Receptors PPARγ and TR4 for Survival , 2012, The Journal of Immunology.

[4]  H. Castro-Faria-Neto,et al.  Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E₂ generation and increased parasite growth. , 2011, The Journal of infectious diseases.

[5]  P. Bozza,et al.  TLR6-Driven Lipid Droplets in Mycobacterium leprae-Infected Schwann Cells: Immunoinflammatory Platforms Associated with Bacterial Persistence , 2011, The Journal of Immunology.

[6]  M. Oosting,et al.  Innate Immune Recognition of Mycobacterium tuberculosis , 2011, Clinical & developmental immunology.

[7]  D. Russell Mycobacterium tuberculosis and the intimate discourse of a chronic infection , 2011, Immunological reviews.

[8]  P. Bozza,et al.  Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes , 2011, Cellular microbiology.

[9]  K. Kain,et al.  CD36 deficiency attenuates experimental mycobacterial infection , 2010, BMC infectious diseases.

[10]  Murugesan V. S. Rajaram,et al.  Mycobacterium tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor γ Linking Mannose Receptor Recognition to Regulation of Immune Responses , 2010, The Journal of Immunology.

[11]  G. Kaplan,et al.  Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism , 2010, EMBO molecular medicine.

[12]  S. Gordon,et al.  Partial Redundancy of the Pattern Recognition Receptors, Scavenger Receptors, and C-Type Lectins for the Long-Term Control of Mycobacterium tuberculosis Infection , 2010, The Journal of Immunology.

[13]  P. Bozza,et al.  Lipid droplet formation in leprosy: Toll‐like receptor‐regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis , 2010, Journal of leukocyte biology.

[14]  K. Moore,et al.  CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer , 2009, Nature Immunology.

[15]  S. Paik,et al.  Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. , 2009, Immunity.

[16]  A. Gamarnik,et al.  Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation , 2009, PLoS pathogens.

[17]  L. Nagy,et al.  Mycobacterium bovis Bacillus Calmette-Guérin Infection Induces TLR2-Dependent Peroxisome Proliferator-Activated Receptor γ Expression and Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis1 , 2009, The Journal of Immunology.

[18]  H. Castro-Faria-Neto,et al.  Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E2 production by macrophages , 2008, Cellular microbiology.

[19]  J. Emile,et al.  Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence , 2008, PLoS pathogens.

[20]  P. Bozza,et al.  Lipid bodies in innate immune response to bacterial and parasite infections. , 2008, International immunopharmacology.

[21]  L. Nagy,et al.  Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function , 2008, The EMBO journal.

[22]  S. Reddy,et al.  Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. , 2008, The Journal of clinical investigation.

[23]  T. Hartung,et al.  Cellular trafficking of lipoteichoic acid and Toll‐like receptor 2 in relation to signaling; role of CD14 and CD36 , 2008, Journal of leukocyte biology.

[24]  R. Bartenschlager,et al.  The lipid droplet is an important organelle for hepatitis C virus production , 2007, Nature Cell Biology.

[25]  S. Boulant,et al.  Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. , 2007, The Journal of general virology.

[26]  Juliette Martin,et al.  CD36 and macrophages in atherosclerosis. , 2007, Cardiovascular research.

[27]  C. Schumann,et al.  Lipopolysaccharides from atherosclerosis‐associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2‐induced inflammatory responses in human vascular endothelial cells , 2007, Cellular microbiology.

[28]  Brigitte Gicquel,et al.  Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence? , 2006, PloS one.

[29]  H. Castro-Faria-Neto,et al.  Toll-Like Receptor-2-Mediated C-C Chemokine Receptor 3 and Eotaxin-Driven Eosinophil Influx Induced by Mycobacterium bovis BCG Pleurisy , 2006, Infection and Immunity.

[30]  T. Hartung,et al.  Membrane Sorting of Toll-like Receptor (TLR)-2/6 and TLR2/1 Heterodimers at the Cell Surface Determines Heterotypic Associations with CD36 and Intracellular Targeting* , 2006, Journal of Biological Chemistry.

[31]  F. Yoshimura,et al.  Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll‐like receptor 2‐centred pattern recognition apparatus , 2006, Cellular microbiology.

[32]  H. Castro-Faria-Neto,et al.  Mycobacterium bovis Bacillus Calmette-Guérin Induces TLR2-Mediated Formation of Lipid Bodies: Intracellular Domains for Eicosanoid Synthesis In Vivo1 , 2006, The Journal of Immunology.

[33]  A. Hoffmann,et al.  Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-like Receptors , 2005, Cell.

[34]  K. Moore,et al.  Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain , 2005, The Journal of cell biology.

[35]  Thomas Hartung,et al.  CD36 is a sensor of diacylglycerides , 2005, Nature.

[36]  P. Detmers,et al.  TLR2 Recognizes a Bacterial Lipopeptide through Direct Binding1 , 2004, The Journal of Immunology.

[37]  Byung Hak Kim,et al.  Inhibitory action of novel aromatic diamine compound on lipopolysaccharide‐induced nuclear translocation of NF‐κB without affecting IκB degradation , 2004 .

[38]  E. Anes,et al.  Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria , 2003, Nature Cell Biology.

[39]  S. Akira,et al.  Involvement of Toll-like Receptor (TLR) 2 and TLR4 in Cell Activation by Mannuronic Acid Polymers* , 2002, The Journal of Biological Chemistry.

[40]  David G. Russell,et al.  Mycobacterium and the coat of many lipids , 2002, The Journal of cell biology.

[41]  Jihong Han,et al.  Role of CD36, the Macrophage Class B Scavenger Receptor, in Atherosclerosis , 2001, Annals of the New York Academy of Sciences.

[42]  G. Schütz,et al.  Lipopolysaccharide and ceramide docking to CD14 provokes ligand‐specific receptor clustering in rafts , 2001, European journal of immunology.

[43]  R. Silverstein,et al.  CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. , 2001, The Journal of clinical investigation.

[44]  J. Auwerx,et al.  Attenuation of Colon Inflammation through Activators of the Retinoid X Receptor (Rxr)/Peroxisome Proliferator–Activated Receptor γ (Pparγ) Heterodimer , 2001, The Journal of experimental medicine.

[45]  A. Aderem,et al.  The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Moore,et al.  Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages1 , 2000, The Journal of Immunology.

[47]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[48]  J. Pieters,et al.  Essential role for cholesterol in entry of mycobacteria into macrophages. , 2000, Science.

[49]  D. Golenbock,et al.  Human Toll-Like Receptor 2 Mediates Monocyte Activation by Listeria monocytogenes, But Not by Group B Streptococci or Lipopolysaccharide1 , 2000, The Journal of Immunology.

[50]  S. Akira,et al.  Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. , 1999, Immunity.

[51]  D. Golenbock,et al.  Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. , 1999, Journal of immunology.

[52]  S. Saccani,et al.  The Human Toll Signaling Pathway: Divergence of Nuclear Factor κB and JNK/SAPK Activation Upstream of Tumor Necrosis Factor Receptor–associated Factor 6 (TRAF6) , 1998, The Journal of experimental medicine.

[53]  R. Evans,et al.  Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ , 1998, Cell.

[54]  R. Evans,et al.  PPARγ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL , 1998, Cell.

[55]  Z. Cao,et al.  MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. , 1997, Immunity.

[56]  David Baltimore,et al.  NF-κB: Ten Years After , 1996, Cell.

[57]  Tom Maniatis,et al.  The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB , 1994, Cell.

[58]  J. Armstrong,et al.  Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival , 1975, The Journal of experimental medicine.

[59]  D. Golenbock,et al.  TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. , 2009, Cellular immunology.

[60]  D. Golenbock,et al.  Streptococci or Lipopolysaccharide , But Not by Group B monocytogenes Listeria Monocyte Activation by Human Toll-Like Receptor 2 Mediates , 2009 .

[61]  M. Kowalewicz-Kulbat,et al.  Monocyte response receptors in BCG driven delayed type hypersensitivity to tuberculin. , 2008, Folia histochemica et cytobiologica.

[62]  B. Ryffel,et al.  Toll-like receptors and control of mycobacterial infection in mice. , 2006, Novartis Foundation symposium.

[63]  Byung Hak Kim,et al.  Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-kappaB without affecting IkappaB degradation. , 2004, FEBS letters.

[64]  R. Silverstein,et al.  CD 36 : a class B scavenger receptor involved in angiogenesis , atherosclerosis , inflammation , and lipid metabolism , 2001 .

[65]  A. Gotto,et al.  CD36, the Macrophage Class B Scavenger Receptor: Regulation and Role in Atherosclerosis , 2001 .

[66]  R. Evans,et al.  PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. , 1998, Cell.

[67]  D. Baltimore,et al.  NF-kappa B: ten years after. , 1996, Cell.

[68]  A. Goldberg,et al.  The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. , 1994, Cell.