A Compact Modeling Approach to Enhance Collaborative Design of Thermal-Fluid Systems

[1]  Yogendra Joshi,et al.  Reduced Order Thermal Models of Multiscale Microsystems , 2012 .

[2]  H. Vinke,et al.  Thermal characterization of electronic devices with boundary condition independent compact models , 1995 .

[3]  Urmila Ghia,et al.  Development of Delphi-Type Compact Thermal Models for Opto-Electronic Packages , 2011 .

[4]  Clemens J. M. Lasance,et al.  Ten Years of Boundary-Condition- Independent Compact Thermal Modeling of Electronic Parts: A Review , 2008 .

[5]  Yogendra Joshi,et al.  Multiscale Thermal Modeling Methodology for Thermoelectrically Cooled Electronic Cabinets , 2007 .

[6]  Ronan Grimes,et al.  Development of Compact Thermal–Fluid Models at the Electronic Equipment Level , 2012 .

[7]  Bahgat Sammakia,et al.  A dynamic compact thermal model for data center analysis and control using the zonal method and artificial neural networks , 2014 .

[8]  J. D. Parry,et al.  The world of thermal characterization according to DELPHI-Part I: Background to DELPHI , 1997 .

[9]  Yogendra Joshi,et al.  Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers , 2010 .

[10]  A. Dunk Product life cycle cost analysis: the impact of customer profiling, competitive advantage, and quality of IS information , 2004 .

[11]  J. D. Parry,et al.  The world of thermal characterization according to DELPHI-Part II: Experimental and numerical methods , 1997 .

[12]  Bahgat Sammakia,et al.  Airflow and temperature distribution optimization in data centers using artificial neural networks , 2013 .

[13]  B. Cullimore,et al.  Customizable Multidiscipline Environments for Heat Transfer and Fluid Flow Modeling , 2004 .