Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material

[1]  M. Garcia-Casal,et al.  High iron content and bioavailability in humans from four species of marine algae. , 2007, The Journal of nutrition.

[2]  H. Almasi,et al.  Physical properties of edible modified starch/carboxymethyl cellulose films , 2010 .

[3]  J. Rhim,et al.  Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. , 2015, Carbohydrate polymers.

[4]  Zhongli Pan,et al.  Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate-apple puree edible films , 2007 .

[5]  F. Cotana,et al.  Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. , 2013, Carbohydrate polymers.

[6]  Keat-Teong Lee,et al.  The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification , 2016 .

[7]  M Jawaid,et al.  Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. , 2016, International journal of biological macromolecules.

[8]  D. Santos,et al.  Antimicrobial Activity Studies and Characterization of Cellulose Acetate Films containing Essential Oils , 2016 .

[9]  S. Horn,et al.  Enzymatic saccharification of brown seaweed for production of fermentable sugars. , 2016, Bioresource technology.

[10]  G. Menezes,et al.  Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. , 2010, Carbohydrate research.

[11]  N. M. José,et al.  Mechanical, Thermal and Barrier Properties of Starch-based Films Plasticized with Glycerol and Lignin and Reinforced with Cellulose Nanocrystals , 2015 .

[12]  S. Park,et al.  Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. , 2014, Carbohydrate polymers.

[13]  R. Misra,et al.  The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. , 2016, Acta biomaterialia.

[14]  Stephen J. Eichhorn,et al.  The Young's modulus of a microcrystalline cellulose , 2001 .

[15]  J. Sirviö,et al.  Biocomposite cellulose-alginate films: promising packaging materials. , 2014, Food chemistry.

[16]  Chun You,et al.  Enzymatic transformation of nonfood biomass to starch , 2013, Proceedings of the National Academy of Sciences.

[17]  M. Ankerfors Microfibrillated cellulose : Energy-efficient preparation techniques and key properties , 2012 .

[18]  J. Rhim Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films , 2011 .

[19]  Shusheng Pang,et al.  Ionic liquids and their interaction with cellulose. , 2009, Chemical reviews.

[20]  Ying Ying Tye,et al.  Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: effect of various simple pretreatment methods on sugar production. , 2012, Bioresource technology.

[21]  S. C. Shit,et al.  Edible Polymers: Challenges and Opportunities , 2014 .

[22]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[23]  M. Sorour,et al.  Preparation and characterization of starch/carrageenan edible films , 2014 .

[24]  C. Biliaderis,et al.  Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch , 1999 .

[25]  Huai N. Cheng,et al.  Physical and mechanical testing of essential oil-embedded cellulose ester films , 2016 .

[26]  Ramani Gade,et al.  SEAWEEDS : A NOVEL BIOMATERIAL , 2022 .

[27]  G. Lewandowicz,et al.  Polymer Biodegradation and Biodegradable Polymers - a Review , 2010 .

[28]  J. Votruba,et al.  Biodegradable plastics from renewable sources , 2008, Folia Microbiologica.

[29]  C. Delerue-Matos,et al.  Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology. , 2010, Bioresource technology.

[30]  A. Karim,et al.  Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. , 2007, Journal of food science.

[31]  J. Rhim,et al.  Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity , 2013 .

[32]  K. S. Miller,et al.  Oxygen and aroma barrier properties of edible films: A review , 1997 .

[33]  Kavitha,et al.  Edible films from Polysaccharides , 2012 .

[34]  Joël Fleurence,et al.  Seaweed proteins: biochemical, nutritional aspects and potential uses , 1999 .

[35]  Curtis L. Weller,et al.  Permeability and Mechanical Properties of Cellulose‐Based Edible Films , 1993 .

[36]  M. Jawaid,et al.  Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review , 2011 .

[37]  Jong-Whan Rhim,et al.  Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film. , 2012, Journal of food science.

[38]  Ipsita Herlekar Biodegradable Ropes from Seaweed Extracts , 2015 .

[39]  S. Mhaske,et al.  Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. , 2012, International journal of biological macromolecules.

[40]  Min Suk Shim,et al.  Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery , 2016, Polymers.

[41]  S. Ribeiro,et al.  A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. , 2016, Carbohydrate polymers.

[42]  Design and synthesis of peptide-cellulose conjugate molecules —Aspects from energy/steric profiles— , 2013, Fibers and Polymers.