Polysaccharide nanofiber made from euglenoid alga.

We have fabricated a polysaccharide nanofiber made from paramylon (β-1,3-glucan), a storage polysaccharide stored as a micrometer-sized particle in the cell of euglenoid alga. Preparation of this nanofiber primarily hinges on the bottom-up approach. First, paramylon, which is originally present in the form of a bundle of nanofibers in a particle, was fibrillated to a randomly coiled polymer by dissolving the particle in a 1.0-mol/L NaOH aqueous solution. Second, the randomly coiled polymer was allowed to self-assemble into a triplex as the NaOH concentration was reduced to 0.25-0.20mol/L. Third, a 20-nm-width nanofiber made from the triplex emerged in the solution when the NaOH concentration was reduced to approximately 0.20mol/L.

[1]  H. Chanzy,et al.  An electron diffraction study of paramylon storage granules from Euglena gracilis , 1981 .

[2]  D. B. Malkoff,et al.  ROLE OF LYSOSOMES IN CELLULAR LYTIC PROCESSES. I. EFFECT OF CARBON STARVATION IN EUGLENA GRACILIS. , 1964, Experimental and molecular pathology.

[3]  Lina Zhang,et al.  Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution. , 2008, The journal of physical chemistry. B.

[4]  T. Norisuye,et al.  Triple Helix of Scleroglucan in Dilute Aqueous Sodium Hydroxide , 1981 .

[5]  T. Sasaki,et al.  A 13C nuclear magnetic resonance study of gel-forming (1 goes to 3)-beta-d-glucans. Evidence of the presence of single-helical conformation in a resilient gel of a curdlan-type polysaccharide 13140 from Alcaligenes faecalis var. myxogenes IFO 13140. , 1977, Biochemistry.

[6]  Gary E. Wnek,et al.  Electrospinning of Nanofiber Fibrinogen Structures , 2003 .

[7]  B. Stone,et al.  Curdlan and other bacterial (1-->3)-beta-D-glucans. , 2005, Applied microbiology and biotechnology.

[8]  M. Sain,et al.  Processing of Cellulose Nanofiber-reinforced Composites , 2005 .

[9]  M. Dentini,et al.  Macromolecular triplex zipping observed in derivatives of fungal (1 --> 3)-beta-D-glucan by electron and atomic force microscopy. , 2001, Biopolymers.

[10]  Lina Zhang,et al.  Renaturation of triple helical polysaccharide lentinan in water-diluted dimethylsulfoxide solution. , 2010, Carbohydrate research.

[11]  H. Fujita,et al.  Triple helix of Schizophyllum commune polysaccharide in dilute solution. 4. Light scattering and viscosity in dilute aqueous sodium hydroxide , 1981 .

[12]  Huajian Gao,et al.  Ultrasonic technique for extracting nanofibers from nature materials , 2007 .

[13]  M. Márquez,et al.  Electrically forced coaxial nanojets for one-step hollow nanofiber design. , 2004, Journal of the American Chemical Society.

[14]  P. W. Wang,et al.  Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. , 2010, Acta biomaterialia.

[15]  B. Stone,et al.  Curdlan and other bacterial (1→3)-β-d-glucans , 2005, Applied Microbiology and Biotechnology.

[16]  Anna K. Monfils,et al.  Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta) , 2011 .

[17]  K. Ogawa,et al.  COMPLEX OF GEL-FORMING β-1,3-D-GLUCAN WITH CONGORED IN ALKALINE SOLUTION , 1972 .

[18]  Chun Xing Li,et al.  Beta-1,3-glucan polysaccharide (schizophyllan) acting as a one-dimensional host for creating supramolecular dye assemblies. , 2006, Organic letters.

[19]  Dan Li,et al.  Processable stabilizer-free polyaniline nanofiber aqueous colloids. , 2005, Chemical communications.

[20]  A 13C nuclear magnetic resonance and circular dichroism study of the collagen-gelatin transformation in enzyme solubilized collagen. , 1975, Biochemistry.

[21]  J. Kiss,et al.  Structure of the euglenoid storage carbohydrate, paramylon , 1987 .

[22]  B. Stokke,et al.  Structural stability of (1 → 3)-β-D-glucan macrocycles , 2001 .

[23]  H. Yano,et al.  Cellulose nanofiber-reinforced polylactic acid , 2008 .

[24]  H. Yano,et al.  Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. , 2007, Biomacromolecules.

[25]  Chao Zhong,et al.  Self-assembled chitin nanofiber templates for artificial neural networks , 2012 .

[26]  L. Barsanti,et al.  Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions , 2001, Journal of Applied Phycology.

[27]  Lina Zhang,et al.  Transition from Triple Helix to Coil of Lentinan in Solution Measured by SEC, Viscometry, and 13C NMR , 2002 .

[28]  Lina Zhang,et al.  Aggregation behavior of triple helical polysaccharide with low molecular weight in diluted aqueous solution. , 2010, The journal of physical chemistry. B.

[29]  E. Morris,et al.  Chain conformations in the sol–gel transitions for poly-saccharide systems, and their characterisation by spectroscopic methods , 1974 .

[30]  Takashi Taniguchi,et al.  New films produced from microfibrillated natural fibres , 1998 .

[31]  Y. Adachi,et al.  Comparison of the immunopharmacological activities of triple and single-helical schizophyllan in mice. , 1995, Biological & pharmaceutical bulletin.

[32]  S. Young,et al.  Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue , 1998 .

[33]  H. Saitǒ,et al.  A 13C-N.M.R.-Spectral study of a gel-forming, branched (1→3)-β-d-glucan, (lentinan) from lentinus edodes, and its acid-degraded fractions. Structure, and dependence of conformation on the molecular weight , 1977 .

[34]  K. Ohkawa,et al.  Chitosan nanofiber. , 2006, Biomacromolecules.

[35]  K. Ogawa,et al.  Conformational behavior of a gel-forming (1→3)-β-D-glucan in alkaline solution , 1972 .

[36]  S. Ikeda,et al.  Atomic force microscopy studies on heat-induced gelation of curdlan. , 2005, Journal of agricultural and food chemistry.

[37]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[38]  Jung-Pyo Hong,et al.  Organic single-nanofiber transistors from organogels. , 2009, Chemical communications.

[39]  Lina Zhang,et al.  Triple Helix of β-D-Glucan from Lentinus Edodes in 0.5 M NaCl Aqueous Solution Characterized by Light Scattering , 2001 .

[40]  Hua Zheng,et al.  Structural characterization, chain conformation, and morphology of a beta-(1-->3)-D-glucan isolated from the fruiting body of Dictyophora indusiata. , 2009, Journal of agricultural and food chemistry.

[41]  A. Harada,et al.  Electron Microscopic Studies on the Ultrastructure of Curdlan and Other Polysaccharides in Gels Used in Foods , 1991 .

[42]  K. Friehs,et al.  Production of paramylon, a β‐1,3‐glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed‐batch and repeated‐batch mode of cultivation , 2012 .

[43]  Ayan Chakraborty,et al.  Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing , 2005 .

[44]  Lina Zhang,et al.  Correlation between antitumor activity, molecular weight, and conformation of lentinan. , 2005, Carbohydrate research.

[45]  Lina Zhang,et al.  Multiple conformation transitions of triple helical lentinan in DMSO/water by microcalorimetry. , 2009, The journal of physical chemistry. B.

[46]  K. Okuyama,et al.  Difference of molecular association in two types of curdlan gel , 1989 .

[47]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[48]  H. Saitǒ,et al.  A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1 → 3)-β-d-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide , 1979 .

[49]  Lina Zhang,et al.  Gel formation and low-temperature intramolecular conformation transition of a triple-helical polysaccharide lentinan in water. , 2008, Biopolymers.

[50]  A. Harada,et al.  Structure of curdlan that is resistant to (1 → 3) β-d-glucanase , 1986 .

[51]  Takao Yamamoto,et al.  Liquid crystalline gel with refractive index gradient of curdlan. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[52]  Xinyu Zhang,et al.  Synthesis of polyaniline nanofibers by "nanofiber seeding". , 2004, Journal of the American Chemical Society.

[53]  R. Deslauriers,et al.  Carbon-13 nuclear magnetic resonance and the conformations of biological molecules , 1975 .

[54]  M. Wada,et al.  TEMPO-mediated oxidation of (1 → 3)-β-d-glucans , 2009 .

[55]  H. Saito,et al.  A Comparison of the Structure of Curdlan and Pachyman , 1968 .

[56]  E. Togawa,et al.  Crystal transition of paramylon with dehydration and hydration , 2010 .

[57]  Akira Isogai,et al.  TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. , 2004, Biomacromolecules.

[58]  T. H. James,et al.  The theory of the photographic process. , 1966 .

[59]  M. Shibakami,et al.  Fabrication of doughnut-shaped particles from spheroidal paramylon granules of Euglena gracilis using acetylation reaction. , 2012, Carbohydrate polymers.

[60]  A. Clarke,et al.  Structure of the paramylon from Euglena gracilis. , 1960, Biochimica et biophysica acta.

[61]  H. Saito,et al.  Curdlan: A bacterial gel-forming β-1, 3-glucan , 1968 .

[62]  R. Marchessault,et al.  Fine structure of (1→3)-β-d-glucans: curdlan and paramylon , 1979 .

[63]  R. Marchessault,et al.  Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates , 1983 .

[64]  C. Hara,et al.  A branched (1→3)-β-d-glucan from a sodium carbonate extract of Dictyophora indusiata fisch , 1983 .

[65]  Wei Wang,et al.  Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing , 2010 .