Convergence of the time-discretized monotonic schemes
暂无分享,去创建一个
[1] Yvon Maday,et al. Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.
[2] Alain Haraux,et al. Rate of decay to equilibrium in some semilinear parabolic equations , 2003 .
[3] Eric G. Brown,et al. Some Mathematical and Algorithmic Challenges in the Control of Quantum Dynamics Phenomena , 2002 .
[4] Hédy Attouch,et al. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..
[5] Karine Beauchard,et al. Local controllability of a 1-D Schrödinger equation , 2005 .
[6] Yvon Maday,et al. New formulations of monotonically convergent quantum control algorithms , 2003 .
[7] G. Strang. Accurate partial difference methods I: Linear cauchy problems , 1963 .
[8] J. Salomon,et al. Limit points the monotonic schemes for quantum control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[9] Jeremie Szeftel. Absorbing Boundary Conditions for One-dimensional Nonlinear Schrödinger Equations , 2006, Numerische Mathematik.
[10] Gilbert Strang,et al. Accurate partial difference methods , 1964 .
[11] J. Andrew McCammon,et al. A comparative study of time dependent quantum mechanical wave packet evolution methods , 1992 .
[12] André D. Bandrauk,et al. Exponential split operator methods for solving coupled time-dependent Schrödinger equations , 1993 .
[13] David J. Tannor,et al. Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .
[14] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[15] Herschel Rabitz,et al. A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .
[16] Kazufumi Ito,et al. Optimal Bilinear Control of an Abstract Schrödinger Equation , 2007, SIAM J. Control. Optim..
[17] H. Rabitz,et al. Teaching lasers to control molecules. , 1992, Physical review letters.
[18] Gabriel Turinici,et al. Control of quantum dynamics: Concepts, procedures and future prospects , 2003 .
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] H. Rabitz,et al. Optimal control of selective vibrational excitation in harmonic linear chain molecules , 1988 .
[21] S. Łojasiewicz. Sur la géométrie semi- et sous- analytique , 1993 .