Convergence of the time-discretized monotonic schemes

Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of the convergence of these schemes and some results regarding their rate of convergence.

[1]  Yvon Maday,et al.  Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.

[2]  Alain Haraux,et al.  Rate of decay to equilibrium in some semilinear parabolic equations , 2003 .

[3]  Eric G. Brown,et al.  Some Mathematical and Algorithmic Challenges in the Control of Quantum Dynamics Phenomena , 2002 .

[4]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[5]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[6]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[7]  G. Strang Accurate partial difference methods I: Linear cauchy problems , 1963 .

[8]  J. Salomon,et al.  Limit points the monotonic schemes for quantum control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  Jeremie Szeftel Absorbing Boundary Conditions for One-dimensional Nonlinear Schrödinger Equations , 2006, Numerische Mathematik.

[10]  Gilbert Strang,et al.  Accurate partial difference methods , 1964 .

[11]  J. Andrew McCammon,et al.  A comparative study of time dependent quantum mechanical wave packet evolution methods , 1992 .

[12]  André D. Bandrauk,et al.  Exponential split operator methods for solving coupled time-dependent Schrödinger equations , 1993 .

[13]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[16]  Kazufumi Ito,et al.  Optimal Bilinear Control of an Abstract Schrödinger Equation , 2007, SIAM J. Control. Optim..

[17]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[18]  Gabriel Turinici,et al.  Control of quantum dynamics: Concepts, procedures and future prospects , 2003 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  H. Rabitz,et al.  Optimal control of selective vibrational excitation in harmonic linear chain molecules , 1988 .

[21]  S. Łojasiewicz Sur la géométrie semi- et sous- analytique , 1993 .