Full-Scale Fracture System Analysis of Shale Reservoir and its Petroleum Significance

Ascertaining the characteristics of fracture system at different scales integratedly is very important for performing efficient exploration and development activities of specific shale gas reservoirs. In this paper, an area around 250 square kilometers in Changning Block of Sichuan Basin is taken as an example, which belongs to Chinese Shale Gas Development Demonstration Plot. Seismic structural interpretation was performed detailedly based on original seismic amplitude cube and derived edge-detection cubes, and then the technologies of finite element horizon flattening, orthogonal decomposition principal component analysis, seismic discontinuity patch auto-extraction and paleo-stress field inversion were applied, together with the existing regional geological understanding and fracture information in wells, to figure out the staging and grouping of fracture system at seismic scale (i.e., at large and middle scales), at the same time to clarify the regional tectonic evolution and its genetic relationship with fractures at different scales such as the ones revealed by seismic data and cores or image logs. The following conclusions were reached. (a) The tectonic movements affecting the development of fracture system in study interval mainly happened during Yanshanian-Himalayan periods, i.e., 3 compressional tectonic episodes which were nearly in S-N direction in Late Yanshanian period, in NNE-SSW direction in Early Himalayan period, and in NWW-SEE direction in Middle Himalayan period respectively. (b) The Late Yanshanian tectonic event primarily formed long-axis anticlines and synclines, thrust faults and fault-related fractures, all of which were nearly in E-W trending, and fold-related fractures in different directions. (c) The Early Himalayan tectonic event mainly formed genetically related conjugate fracture sets including strike-slip faults and shear fractures both in NNW and NE directions, and transverse extensional fractures. (d) The Middle Himalayan tectonic event chiefly formed thrust faults, and related fractures and folds in NNE~NE direction, and transverse extensional fractures. (e) Furtherly our work demonstrated that such kind of fracture system analysis was of great significance in building discrete fracture network, providing precautionary advice for drilling engineering, and optimizing completion program and field development plan, etc. Hence, integrated fracture system analysis at full scales to reach more meaningful and robust conclusions is essential work for unconventional resources evaluation and characterization.