Stochastic analyses for online combinatorial optimization problems

In this paper, we study online algorithms when the input is not chosen adversarially, but consists of draws from some given probability distribution. While this model has been studied for online problems like paging and <i>k</i>-server, it is not known how to beat the Φ(log <i>n</i>) bound for online Steiner tree if at each time instant, the demand vertex is a uniformly random vertex from the graph. For the online Steiner tree problem, we show that if each demand vertex is an independent draw from some probability distribution π: <i>V</i> → [0, 1], a variant of the natural greedy algorithm achieves <b>E</b><sub>ω</sub>[<b><i>A</i></b>(ω)]/<b>E</b><sub>ω</sub>[OPT (ω)] = <i>O</i>(1); moreover, this result can be extended to some other subadditive problems. Both assumptions that the input sequence consists of <i>independent</i> draws from π, and that π is known to the algorithm are both essential; we show (almost) logarithmic lower bounds if either assumption is violated. Moreover, we give preliminary results on extending the Steiner tree results above to the related "expected ratio" measure <b>E</b><sub>ω</sub>[ω(ω)/OPT (ω)]. Finally, we use these ideas to give an average-case analysis of the Universal TSP problem.

[1]  Adam Meyerson,et al.  Online facility location , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[2]  Dimitris Fotakis,et al.  On the Competitive Ratio for Online Facility Location , 2003, Algorithmica.

[3]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[4]  Nicole Immorlica,et al.  On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems , 2004, SODA '04.

[5]  Makoto Imase,et al.  Dynamic Steiner Tree Problem , 1991, SIAM J. Discret. Math..

[6]  Sudipto Guha,et al.  Hierarchical placement and network design problems , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[7]  Lyle A. McGeoch,et al.  Competitive Algorithms for Server Problems , 1990, J. Algorithms.

[8]  Daniel J. Rosenkrantz,et al.  An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[9]  Chaitanya Swamy,et al.  An approximation scheme for stochastic linear programming and its application to stochastic integer programs , 2006, JACM.

[10]  Tim Roughgarden,et al.  Simpler and better approximation algorithms for network design , 2003, STOC '03.

[11]  Dimitris Fotakis On the Competitive Ratio for Online Facility Location , 2007, Algorithmica.

[12]  Neal E. Young,et al.  On-Line Paging Against Adversarially Biased Random Inputs , 2000, J. Algorithms.

[13]  David R. Karger,et al.  Building Steiner trees with incomplete global knowledge , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[14]  Ran El-Yaniv,et al.  The statistical adversary allows optimal money-making trading strategies , 1995, SODA '95.

[15]  R. Ravi,et al.  Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems , 2004, Math. Program..

[16]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[17]  Allan Borodin,et al.  A new measure for the study of on-line algorithms , 2005, Algorithmica.

[18]  Neal E. Young,et al.  On-line caching as cache size varies , 1991, SODA '91.

[19]  Kamesh Munagala,et al.  Designing networks incrementally , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[20]  Bala Kalyanasundaram,et al.  Speed is as powerful as clairvoyance , 2000, JACM.

[21]  Tim Roughgarden,et al.  Approximation via cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[22]  Christos H. Papadimitriou,et al.  Beyond competitive analysis [on-line algorithms] , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  Jochen Könemann,et al.  Simple cost sharing schemes for multicommodity rent-or-buy and stochastic Steiner tree , 2006, STOC '06.

[24]  Samir Khuller,et al.  Balancing Minimum Spanning and Shortest Path Trees , 1993, SODA.

[25]  Alexander Souza,et al.  The Expected Competitive Ratio for Weighted Completion Time Scheduling , 2004, Theory of Computing Systems.

[26]  Allan Borodin,et al.  Competitive paging with locality of reference , 1991, STOC '91.

[27]  Sandy Irani,et al.  Online computation , 1996 .

[28]  Luca Becchetti,et al.  Modeling Locality: A Probabilistic Analysis of LRU and FWF , 2004, ESA.

[29]  S HochbaDorit Approximation Algorithms for NP-Hard Problems , 1997 .

[30]  Alexander Souza,et al.  On adequate performance measures for paging , 2006, STOC '06.

[31]  Amos Fiat,et al.  Experimental Studies of Access Graph Based Heuristics: Beating the LRU Standard? , 1997, SODA.

[32]  Noga Alon,et al.  On-line steiner trees in the Euclidean plane , 1992, SCG '92.

[33]  Amos Fiat,et al.  Randomized and multipointer paging with locality of reference , 1995, STOC '95.

[34]  Susanne Albers,et al.  On‐Line Algorithms , 2013 .

[35]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[36]  Anna R. Karlin,et al.  Markov Paging , 2000, SIAM J. Comput..

[37]  Moses Charikar,et al.  Sampling Bounds for Stochastic Optimization , 2005, APPROX-RANDOM.

[38]  Prabhakar Raghavan,et al.  A Statistical Adversary for On-line Algorithms , 1991, On-Line Algorithms.

[39]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[40]  Anna R. Karlin,et al.  Competitive snoopy caching , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[41]  R. Ravi,et al.  Boosted sampling: approximation algorithms for stochastic optimization , 2004, STOC '04.

[42]  Sandy Irani,et al.  Strongly competitive algorithms for paging with locality of reference , 1992, SODA '92.

[43]  Tim Roughgarden,et al.  Approximation via cost sharing , 2007, J. ACM.

[44]  Cynthia A. Phillips,et al.  Optimal Time-Critical Scheduling via Resource Augmentation , 1997, STOC '97.

[45]  Angelika Steger,et al.  A new average case analysis for completion time scheduling , 2002, STOC '02.