Arbitrary High-Order Explicit Hybridizable Discontinuous Galerkin Methods for the Acoustic Wave Equation

We propose a new formulation of explicit time integration for the hybridizable discontinuous Galerkin (HDG) method in the context of the acoustic wave equation based on the arbitrary derivative approach. The method is of arbitrary high order in space and time without restrictions such as the Butcher barrier for Runge–Kutta methods. To maintain the superconvergence property characteristic for HDG spatial discretizations, a special reconstruction step is developed, which is complemented by an adjoint consistency analysis. For a given time step size, this new method is twice as fast compared to a low-storage Runge–Kutta scheme of order four with five stages at polynomial degrees between two and four. Several numerical examples are performed to demonstrate the convergence properties, reveal dispersion and dissipation errors, and show solution behavior in the presence of material discontinuities. Also, we present the combination of local time stepping with h-adaptivity on three-dimensional meshes with curved elements.

[1]  Claus-Dieter Munz,et al.  A RUNGE-KUTTA BASED DISCONTINUOUS GALERKIN METHOD WITH TIME ACCURATE LOCAL TIME STEPPING , 2011 .

[2]  Andrew R. Winters,et al.  High-Order Local Time Stepping on Moving DG Spectral Element Meshes , 2014, J. Sci. Comput..

[3]  Wei Guo,et al.  A New Lax–Wendroff Discontinuous Galerkin Method with Superconvergence , 2015, J. Sci. Comput..

[4]  Ralf Hartmann,et al.  Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations , 2007, SIAM J. Numer. Anal..

[5]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[6]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[7]  Qing Huo Liu,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2003 .

[8]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[9]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[10]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[11]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[12]  Lilia Krivodonova,et al.  An analysis of the spectrum of the discontinuous Galerkin method , 2013 .

[13]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[14]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[15]  Wolfgang A. Wall,et al.  Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation , 2016 .

[16]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[17]  He Yang,et al.  Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods , 2012, Journal of Scientific Computing.

[18]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study in 3D , 2016, J. Sci. Comput..

[19]  Katharina Kormann,et al.  A generic interface for parallel cell-based finite element operator application , 2012 .

[20]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[21]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[22]  Bernardo Cockburn,et al.  Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation , 2013, Math. Comput..

[23]  Martin Kronbichler,et al.  Algorithms and data structures for massively parallel generic adaptive finite element codes , 2011, ACM Trans. Math. Softw..

[24]  Michael Dumbser,et al.  Arbitrary high order finite volume schemes for linear wave propagation , 2006 .

[25]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[26]  Marcus J. Grote,et al.  Runge-Kutta-Based Explicit Local Time-Stepping Methods for Wave Propagation , 2015, SIAM J. Sci. Comput..

[27]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[28]  Michael Dumbser,et al.  Fast high order ADER schemes for linear hyperbolic equations , 2004 .

[29]  J. Peraire,et al.  An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation , 2016 .

[30]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[31]  Bernardo Cockburn,et al.  High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..

[32]  Ke Shi,et al.  Conditions for superconvergence of HDG methods for second-order elliptic problems , 2012, Math. Comput..

[33]  S. Piperno Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .

[34]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[35]  David I. Ketcheson,et al.  Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods , 2014, J. Sci. Comput..