Condensation in Supersonic and Hypersonic Wind Tunnels

Publisher Summary In an isentropic expansion of a vapor mixture, the entropy of individual components is not necessarily constant. In an expansion of moist air, the presence of water vapor may be neglected until condensation occurs. The relative humidity of moist air during an expansion in a supersonic nozzle increases rapidly with increasing Mach number. Saturation—with respect to equilibrium conditions—is reached for all normal humidities ahead of a nozzle throat. The shocklike disturbances and pressure nonuniformities, which are seen near the throat of a supersonic nozzle operated with moist air, are because of the condensation of the water vapor and the attendant heat release in the flow. Actual condensation is nearly always observed at supersonic speeds, which demonstrates that before condensing, the water vapor is in a highly supersaturated state. Finally, it is apparent that the prediction of condensation effects in nozzles operated with moist air is a subject for kinetic theory. However, once the condensation environment is known, thermodynamic and fluid dynamic considerations will be applicable.

[1]  W. Kossel Zur Energetik von Oberflächenvorgängen , 1934 .

[2]  P. Wegener Water Vapor Condensation Process in Supersonic Nozzles , 1954 .

[3]  J. Becker Results of Recent Hypersonic and Unsteady Flow Research at the Langley Aeronautical Laboratory , 1950 .

[4]  P. Wegener Summary of Recent Experimental Investigations in the N.O.L. Hyperballistics Wind Tunnel , 1951 .

[5]  R. Buhler Condensation of air components in hypersonic wind tunnels : theoretical calculations and comparison with experiment , 1952 .

[6]  D. E. Roberts,et al.  Liquid-vapor phase equilibrium in solutions of oxygen and nitrogen at pressures below one atmosphere , 1955 .

[7]  George T. Furukawa,et al.  The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen , 1953 .

[8]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[9]  J. Grey The effects of air condensation on properties of flow and their measurement in hypersonic wind tunnels , 1952 .

[10]  C. Mclellan Exploratory Wind-Tunnel Investigation of Wings and Bodies at M=6.9 , 1951 .

[11]  R. Probstein Time Lag in the Self‐Nucleation of a Supersaturated Vapor , 1951 .

[12]  P. Arthur Effects of impurities on the supersaturation of nitrogen in a hypersonic wind tunnel , 1952 .

[13]  William Thomson,et al.  4. On the Equilibrium of Vapour at a Curved Surface of Liquid. , 1872 .

[14]  W. Hazen Some Operating Characteristics of the Wilson Cloud Chamber , 1942 .

[15]  N. N. Das Gupta,et al.  A Report on the Wilson Cloud Chamber and Its Applications in Physics , 1946 .

[16]  F. Kuhrt Das Tröpfchenmodell übersättigter realer Gase , 1952 .

[17]  Barnett F. Dodge,et al.  AN INVESTIGATION OF THE COEXISTING LIQUID AND VAPOR PHASES OF SOLUTIONS OF OXYGEN AND NITROGEN1 , 1927 .

[18]  W. H. Heybey,et al.  Weak Detonations and Condensation Shocks , 1955 .

[19]  M. Volmer,et al.  Keimbildung in übersättigten Gebilden , 1926 .

[20]  S. Reed Change in Thermodynamic Properties Along Isentropes at the Coexistence Line Far from the Critical Point , 1952 .

[21]  R. Helmholtz Untersuchungen über Dämpfe und Nebel, besonders über solche von Lösungen , 1886 .

[22]  C Frederick Hansen,et al.  Condensation of air in supersonic wind tunnels and its effects on flow about models , 1952 .

[23]  Arthur Kantrowitz,et al.  Nucleation in Very Rapid Vapor Expansions , 1951 .

[24]  L. Farkas Keimbildungsgeschwindigkeit in übersättigten Dämpfen , 1927 .

[25]  Y. S. Touloukian,et al.  Tables of thermal properties of gases , 1955 .

[26]  S. Reed Some Examples of Weak Detonations , 1952 .

[27]  H. Wakeshima Spontaneous Condensation in a supersonic Flow of Humid Air , 1955 .

[28]  P. Chambré On the Steady Flow of a Gas Through a Tube with Heat Exchange or Chemical Reaction , 1946 .

[29]  F. K. Hill Boundary-Layer Measurements in Hypersonic Flow , 1956 .

[30]  J. Inglis LVIII. The isothermal distillation of nitrogen and oxygen and of argon and oxygen , 1906 .

[31]  F. K. Hill,et al.  The Supersaturation of Nitrogen in a Hypersonic Wind Tunnel , 1952 .

[32]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Surface Tension , 1949 .

[33]  F. W. Ross The Propagation in a Compressible Fluid of Finite Oblique Disturbances with Energy Exchange and Change of State , 1951 .

[34]  Guy Stever,et al.  Theoretical and Experimental Investigation of Condensation of Air in Hypersonic Wind Tunnels , 1951 .

[35]  F. Kuhrt Das Tröpfchenmodell realer Gase , 1952 .

[36]  P. Wegener,et al.  Condensation of Water Vapor in the Shock Tube Below 150°K , 1951 .

[37]  L. S. Germain,et al.  Growth of drops formed in a Wilson cloud chamber. , 1947, The Review of scientific instruments.

[38]  Joseph V. Charyk Condensation phenomena in supersonic flows , 1946 .

[39]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[40]  A. M. Binnie,et al.  The Pressure Distribution in a Convergent-Divergent Steam Nozzle: , 1938 .

[41]  K. Oswatitsch,et al.  Kondensationserscheinungen in Überschalldüsen . , 1942 .

[42]  W. Willmarth,et al.  The Condensation of Nitrogen in a Hypersonic Nozzle , 1952 .

[43]  N. Frossling,et al.  Uber die Verdunstung fallender Tropfen , 1938 .

[44]  Air Condensation in Hypersonic Flow , 1951 .

[45]  M. Volmer,et al.  Tröpfchenbildung in Dämpfen , 1934 .

[46]  Sir William Thomson F.R.S. LX. On the equilibrium of vapour at a curved surface of liquid , 1871 .

[47]  N. N. Kochina,et al.  Strong point-blasts in a compressible medium , 1958 .

[48]  S. Bogdonoff Fluid Dynamic Effects at Speeds From M = 11 to 15 , 1956 .