Size effect on the thermal conductivity of nanowires

The size effect on thermal conductivity of a free-standing wire with rectangular cross-section is investigated. The electronic thermal conductivity is calculated within a Boltzmann transport equation approach. A simple expression for the reduction in conductivity due to the increase of boundary scattering is presented. The values of thermal conductivity deduced from our calculation are in good agreement with the experimental data for sodium and gold nanowires. The lattice thermal conductivities of silicon (Si) and cadmium telluride (CdTe) nanowires are examined on the basis of the equations of phonon radiative transfer. The calculated thermal conductivities of Si nanowires with square cross-section are found to be in good agreement with molecular dynamics results. The Umklapp and boundary scattering limited lattice thermal conductivities of CdTe nanowires are investigated theoretically by taking into account acoustic phonon dispersion. It is found that the thermal conductivity of nanowires decreases with ...

[1]  Christian Fazi,et al.  Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications , 2000 .

[2]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[3]  Chu Jun-hao,et al.  Thermal conductivity of metallic wires , 2001 .

[4]  Niccolò Rinaldi Thermal analysis of solid-state devices and circuits: an analytical approach , 2000 .

[5]  R. Bate,et al.  Size Effects in the Resistivity of Indium Wires at 4.2°K , 1963 .

[6]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[7]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[8]  M. Cardona,et al.  THERMAL-CONDUCTIVITY MEASUREMENTS OF GAAS/ALAS SUPERLATTICES USING A PICOSECOND OPTICAL PUMP-AND-PROBE TECHNIQUE , 1999 .

[9]  D. MacDonald,et al.  Size effect variation of the electrical conductivity of metals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Pamela M. Norris,et al.  SIZE EFFECTS ON THE THERMAL CONDUCTIVITY OF THIN METALLIC WIRES: MICROSCALE IMPLICATIONS , 2000 .

[11]  D. Broido,et al.  Lattice thermal conductivity of wires , 1999 .

[12]  Kang L. Wang,et al.  In-plane lattice thermal conductivity of a quantum-dot superlattice , 2000 .

[13]  Ping Hui,et al.  Thermal conductivities of evaporated gold films on silicon and glass , 1999 .

[14]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[15]  A. Majumdar Microscale Heat Conduction in Dielectric Thin Films , 1993 .

[16]  G. Vradis,et al.  Thermal Conductivity of Thin Metallic Films , 1994 .

[17]  M. Stroscio,et al.  Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field , 1998 .

[18]  T. R. Anthony,et al.  Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. , 1992, Physical review letters.

[19]  J.W.C. de Vries,et al.  Temperature and thickness dependence of the resistivity of thin polycrystalline aluminium, cobalt, nickel, palladium, silver and gold films , 1988 .

[20]  K. L. Chopra,et al.  Thermal conductivity of copper films , 1974 .

[21]  M. Stroscio,et al.  Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell , 2000 .

[22]  C. L. Tien,et al.  Size Effects on Nonequilibrium Laser Heating of Metal Films , 1993 .

[23]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[24]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[25]  C. Pai,et al.  Interconnect technology trend for microelectronics , 1999 .

[26]  M. Welland,et al.  Size effects in the electrical resistivity of polycrystalline nanowires , 2000 .

[27]  A. Suisalu,et al.  HIGH-PRESSURE LOW-TEMPERATURE PHASE TRANSITION IN A DOPED PARA-TERPHENYL CRYSTAL : A SPECTRAL-HOLE-BURNING STUDY , 1998 .

[28]  Ralph B. Dinwiddie,et al.  Thermal Conductivity 23 , 1996 .

[29]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[30]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .

[31]  William F. Banholzer,et al.  Thermal conductivity of isotopically modified single crystal diamond. , 1993 .