High-power lithium batteries from functionalized carbon-nanotube electrodes.

[1]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[2]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[3]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[4]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[5]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[6]  Shuo Chen,et al.  Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. , 2009, Journal of the American Chemical Society.

[7]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[8]  Hyun-Wook Lee,et al.  Spinel LiMn2O4 nanorods as lithium ion battery cathodes. , 2008, Nano letters.

[9]  Xu Zhang,et al.  Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells , 2008 .

[10]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[11]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[12]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[13]  Patrice Simon,et al.  New Materials and New Configurations for Advanced Electrochemical Capacitors , 2008 .

[14]  Xiao‐Qing Yang,et al.  Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications , 2008 .

[15]  D. Rolison,et al.  Electroless Deposition of Nanoscale MnO2 on Ultraporous Carbon Nanoarchitectures: Correlation of Evolving Pore-Solid Structure and Electrochemical Performance , 2008 .

[16]  M. Armand,et al.  Building better batteries , 2008, Nature.

[17]  Nancy J. Dudney,et al.  Thin Film Micro-Batteries , 2008 .

[18]  Candace K. Chan,et al.  Nanorods as Lithium Ion Battery Cathodes , 2008 .

[19]  Ming Li,et al.  A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery , 2008 .

[20]  D. Bélanger,et al.  Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors , 2008 .

[21]  Patrice Simon,et al.  Nanostructured Carbons : Double-Layer Capacitance and More , 2008 .

[22]  Taolei Sun,et al.  Aromatic Carbonyl Derivative Polymers as High‐Performance Li‐Ion Storage Materials , 2007 .

[23]  P T Hammond,et al.  Automated process for improved uniformity and versatility of layer-by-layer deposition. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[24]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[25]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[26]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[27]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[28]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[29]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[30]  E. Frąckowiak,et al.  Effect of nitrogen in carbon electrode on the supercapacitor performance , 2005 .

[31]  Frank T. Fisher,et al.  Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems , 2005, Chemistry of Materials.

[32]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[33]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[34]  John R. Owen,et al.  Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries , 2003 .

[35]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[36]  P. Burg,et al.  The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods , 2002 .

[37]  Bruno Scrosati,et al.  Nanoscale Materials for Lithium-Ion Batteries , 2002 .

[38]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[39]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[40]  L. Nazar,et al.  Nanostructured materials for energy storage , 2001 .

[41]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[42]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[43]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[44]  Zhu,et al.  Adsorption and desorption of an O2 molecule on carbon nanotubes , 2000, Physical review letters.

[45]  Franco Cacialli,et al.  Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes , 1999 .

[46]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[47]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[48]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[49]  Gero Decher,et al.  Toward Layered Polymeric Multicomposites , 1997 .

[50]  K. J. Hüttinger,et al.  Surface-oxidized carbon fibers: I. Surface structure and chemistry , 1996 .

[51]  P. Sherwood,et al.  X-ray photoelectron-spectroscopic studies of carbon-fibre surfaces. Part 5.—The effect of pH on surface oxidation , 1985 .

[52]  L. Napolitano Materials , 1984, Science.