Simultaneous model matching and disturbance rejection with stability by state feedback

This work deals with the Model Matching Problem and the Disturbance Rejection Problem with stability by state feedback. Each one of these control problems has, separately, received a lot of contributions, but, to our best knowledge, we propose here for the first time a complete structural solution for square (same number of control inputs and outputs) strictly proper systems. Our structural conditions nicely enhance the role played by the zeros, both finite and infinite.

[1]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[2]  Michel Malabre,et al.  Simultaneous disturbance rejection and regular row by row decoupling with stability: a geometric approach , 1995, IEEE Trans. Autom. Control..

[3]  G. Verghese Infinite-frequency behaviour in generalized dynamical systems , 1978 .

[4]  I. Rhodes,et al.  Disturbance localization in linear systems with simultaneous decoupling, pole assignment, or stabilization , 1975 .

[5]  Brian D. O. Anderson,et al.  Triangularization technique for the design of multivariable control systems , 1978 .

[6]  J. Dion,et al.  Simultaneous decoupling and disturbance rejection—a structural approach , 1994 .

[7]  Vladimír Kučera,et al.  Analysis and design of discrete linear control systems , 1991 .

[8]  A. Morse Structure and design of linear model following systems , 1973 .

[9]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[10]  B. Molinari Structural invariants of linear multivariable systems , 1978 .

[11]  Nicos Karcanias,et al.  Structure, Smith-MacMillan form and coprime MFDs of a rational matrix inside a region P =ω∪{∞} , 1983 .

[12]  M. Malabre,et al.  Simultaneous model matching and disturbance rejection by state feedback , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[13]  Michel Malabre,et al.  Infinite structure and exact model matching problem: A geometric approach , 1984 .

[14]  Eric S. Lander,et al.  AN ALGEBRAIC APPROACH , 1983 .

[15]  Patrizio Colaneri,et al.  Model Matching with Stability for Periodic Discrete-Time Systems , 1997 .

[16]  M. Heymann,et al.  Linear Feedback—An Algebraic Approach , 1978 .

[17]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[18]  P. Colaneri,et al.  Model matching for periodic systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[19]  W. M. Wonham,et al.  Decoupling and disturbance rejection , 1975 .

[20]  Christian Commault,et al.  Condensed structural solutions to the disturbance rejection and decoupling problems with stability , 1999 .

[21]  Kanat Camlibel,et al.  Simultaneous model matching and disturbance rejection in singular systems , 1997, 1997 European Control Conference (ECC).

[22]  Roy Dubisch,et al.  Introduction to modern algebra , 1961 .

[23]  W. A. Wolovich,et al.  The Use of State Feedback for Exact Model Matching , 1972 .