Manganese Oxide Nanosheets with Mixed Valence States as a Separator Coating for Lithium–Sulfur Batteries

[1]  Yongfu Zhu,et al.  Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery , 2022, Nano-Micro Letters.

[2]  Weijie Yang,et al.  Inexpensive and Eco-Friendly Nanostructured Birnessite-Type Δ-Mno2: A Design Strategy from Oxygen Defect Engineering and K+ Pre-Intercalation , 2022, SSRN Electronic Journal.

[3]  Ruirui Wang,et al.  Implanting Single Zn Atoms Coupled with Metallic Co Nanoparticles into Porous Carbon Nanosheets Grafted with Carbon Nanotubes for High‐Performance Lithium‐Sulfur Batteries , 2022, Advanced Functional Materials.

[4]  Q. Shen,et al.  Constructing a multifunctional mesoporous composite of metallic cobalt nanoparticles and nitrogen‐doped reduced graphene oxides for high‐performance lithium–sulfur batteries , 2022, Carbon Energy.

[5]  Shenglin Xiong,et al.  Dual‐Functional NbN Ultrafine Nanocrystals Enabling Kinetically Boosted Lithium–Sulfur Batteries , 2022, Advanced Functional Materials.

[6]  Wei Tang,et al.  Packing Sulfur Species by Phosphorene‐Derived Catalytic Interface for Electrolyte‐Lean Lithium–Sulfur Batteries , 2021, Advanced Functional Materials.

[7]  Yuan Ha,et al.  Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries , 2021, Nano-micro letters.

[8]  Guofu Zhou,et al.  Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior , 2021 .

[9]  Donghui Long,et al.  Direct trapping and rapid conversing of polysulfides via a multifunctional Nb2O5-CNT catalytic layer for high performance lithium-sulfur batteries , 2021 .

[10]  Shangpeng Gao,et al.  Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene. , 2021, ACS nano.

[11]  Ze Zhang,et al.  Boosting the polysulfide confinement in B/N–codoped hierarchically porous carbon nanosheets via Lewis acid–base interaction for stable Li–S batteries , 2020, Journal of Energy Chemistry.

[12]  Ruirui Wang,et al.  Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries , 2020 .

[13]  Ze Zhang,et al.  Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery , 2020, Science China Materials.

[14]  Meng Zhao,et al.  MnO2 supported on acrylic cloth as functional separator for high-performance lithium–sulfur batteries , 2020 .

[15]  L. Mai,et al.  Zn2+ Pre-Intercalation Stabilizes the Tunnel Structure of MnO2 Nanowires and Enables Zinc-Ion Hybrid Supercapacitor of Battery-Level Energy Density. , 2020, Small.

[16]  Ze Zhang,et al.  In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage , 2019 .

[17]  H. Yang,et al.  Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li2 S Redox Conversion in Li-S Batteries. , 2019, Small.

[18]  Guohua Chen,et al.  CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries , 2019, Chemical Engineering Journal.

[19]  N. Zheng,et al.  Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries. , 2019, Small.

[20]  Yongjiu Lei,et al.  Solubility contrast strategy for enhancing intercalation pseudocapacitance in layered MnO2 electrodes , 2019, Nano Energy.

[21]  M. Waqas,et al.  Carbon-Tungsten Disulfide Composite Bilayer Separator for High-Performance Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[22]  Qiang Zhang,et al.  Enhanced Electrochemical Kinetics and Polysulfide Traps of Indium Nitride for Highly Stable Lithium-Sulfur Batteries. , 2018, ACS nano.

[23]  Yongyao Xia,et al.  Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery , 2018, Nature Communications.

[24]  Haihui Wang,et al.  Self-Assembled Close-Packed MnO2 Nanoparticles Anchored on a Polyethylene Separator for Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[25]  Xianyou Wang,et al.  MnO 2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries , 2018 .

[26]  M. Antonietti,et al.  Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries. , 2018, Nano letters.

[27]  K. Edström,et al.  Redox‐Active Separators for Lithium‐Ion Batteries , 2017, Advanced science.

[28]  Zhian Zhang,et al.  A carbon nanofiber@mesoporous δ-MnO2 nanosheet-coated separator for high-performance lithium-sulfur batteries , 2017 .

[29]  Z. Tang,et al.  MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium–Sulfur Batteries , 2017, Advanced materials.

[30]  K. Jiang,et al.  Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide‐Trapping Shield for High‐Performance Li–S Batteries , 2017 .

[31]  Guowang Diao,et al.  Core-Shell Structure and Interaction Mechanism of γ-MnO2 Coated Sulfur for Improved Lithium-Sulfur Batteries. , 2017, Small.

[32]  Yanglong Hou,et al.  Integrated Design of MnO2 @Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries. , 2017, Small.

[33]  W. Chu,et al.  Double-Exchange Effect in Two-Dimensional MnO2 Nanomaterials. , 2017, Journal of the American Chemical Society.

[34]  J. Janek,et al.  Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle , 2016 .

[35]  Zhian Zhang,et al.  Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries , 2015 .

[36]  Arumugam Manthiram,et al.  Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide , 2015 .

[37]  Shaoming Huang,et al.  A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long‐Life Lithium–Sulfur Batteries , 2015, Advanced materials.

[38]  Huisheng Peng,et al.  A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. , 2015, Small.

[39]  Bicai Pan,et al.  Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. , 2015, Angewandte Chemie.

[40]  Xiao Liang,et al.  A highly efficient polysulfide mediator for lithium–sulfur batteries , 2015, Nature Communications.

[41]  Jun Liu,et al.  V2O5 Polysulfide Anion Barrier for Long-Lived Li–S Batteries , 2014 .

[42]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[43]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[44]  J. Rong,et al.  Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries , 2022, Chemical Engineering Journal.

[45]  Longwei Yin,et al.  Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries. , 2018, Small.