Balanced detection for spectral domain optical coherence tomography.

The use and advantages of applying balanced-detection (BD) operation method to high speed spectral domain optical coherence tomography (SDOCT) are presented in this study, which we believe is the first such demonstration. Compared to conventional SDOCT, BD-SDOCT provides two unique advantages. First, the method can suppress background noise and autocorrelation artifacts in biological tissues. Second, it is a power-efficient method which is particularly helpful for high speed SDOCT to eliminate random intensity noise and to achieve shot noise limited detection. This performance allows in vivo three-dimensional tissue visualization with high imaging quality and high speed.

[1]  Norihiko Nishizawa,et al.  Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. , 2006, Optics express.

[2]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[3]  J. Izatt,et al.  Optimal interferometer designs for optical coherence tomography. , 1999, Optics letters.

[4]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[5]  H. Moneib,et al.  Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations , 2012, The Journal of dermatology.

[6]  David Liao,et al.  Role of beat noise in limiting the sensitivity of optical coherence tomography. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[8]  Barry Cense,et al.  Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. , 2007, Journal of biomedical optics.

[9]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[10]  A. Podoleanu Unbalanced versus balanced operation in an optical coherence tomography system. , 2000, Applied optics.

[11]  Stefan Kray,et al.  Simultaneous dual-band ultra-high resolution optical coherence tomography. , 2007, Optics express.

[12]  Vladimir Shidlovski,et al.  Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. , 2004, Optics express.

[13]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[14]  B E Bouma,et al.  Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. , 1996, Optics letters.

[15]  Y. Yagi,et al.  Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT) , 2011, Nature Medicine.

[16]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[17]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[18]  G. Abbas,et al.  A dual-detector optical heterodyne receiver for local oscillator noise suppression , 1985, Journal of Lightwave Technology.

[19]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[20]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[21]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[22]  Kazumasa Takada,et al.  Noise in optical low-coherence reflectometry , 1998 .

[23]  L. A. Paunescu,et al.  Ultrahigh-resolution optical coherence tomography in glaucoma. , 2005, Ophthalmology.

[24]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[25]  T. Mitsui,et al.  Dynamic Range of Optical Reflectometry with Spectral Interferometry , 1999 .

[26]  S Paolino,et al.  Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement? , 2006, Rheumatology.

[27]  Edmund Koch,et al.  Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. , 2009, Optics express.

[28]  C. Hitzenberger,et al.  High speed spectral domain polarization sensitive optical coherence tomography of the human retina. , 2005, Optics express.